
2

Bend Sinister : Monstrosity and Normative 
Effect in Computational Practice

Simon Yuill

To learn programming is to embark on years of practice, learning to engage 

with the unknowable, while battling with complex and sometimes unhelpful 

theory.

Alex McLean, ‘Exclusion in Free Software Culture’1

What pleasure does programming give? This daunting summary given by Alex 

McLean neatly summarizes all that may dissuade someone from taking up 

the challenge, although for others it may be all the incentive required. Beyond 

mere masochism, or intellectual bravado, in what forms does pleasure arise in 

the labour of coding? A common response is that offered under the guise of 

elegance, that there is a certain satisfaction derived from writing an algorithm 

that performs its task in a particularly effective and clear manner. Such elegance 

is often postulated as something understood aesthetically, as something that is 

both an intuitive sensuous response and also a matter of cultivated taste. Such is 

the position put forward in Donald Knuth’s The Art of Computer Programming. 

For McLean this pleasure is found by coding in nightclubs. feedback.pl is a 

Perl script by McLean that enables a programmer to perform live improvised 

music by writing and editing simple algorithms that are executed in realtime 

– a practice known as livecoding. In providing McLean a means of colliding 

programming and dancing, the xterm2 and techno, feedback.pl unleashes a 

previously unknown pleasure that situates the arduous labour of coding within 

the hedonistic monstrations of clubbing: ‘with hundreds of people dancing to 

my Perl, jumping about to my subroutines, whooping as I started up a new 

script’.3 As such it challenges many norms of programming practice and societal 

expectations of what programming is, and reverses the established (non)



42 Fun and Software

physicality of the programmer.4 Even while making this challenge, feedback.

pl remains a highly skilful exemplification of Knuth’s elegant coding which, as 

Knuth describes it, ‘can be an aesthetic experience much like composing poetry 

or music’.5 McLean’s program itself is brief and conceptually succinct. In an 

article presenting the project, Hacking Perl in Nightclubs, McLean provides a 

coding example based around a modulo operation on a divisor of four, creating 

a basic four-four rhythm against which more complex polyrhythms are played, 

both encapsulating and transcending the quintessence of modern dance music 

in a few short lines of code:6

sub bang {

 my $self = shift;

 my $note = 100;

 $note += 50 if $self->{bangs} % 4 == 0;

 $note -= 30 if $self->{bangs} % 3 == 0;

 $note += 60 if $self->{bangs} % 7 == 0;

 beep($note, 40);

 $self->code->[0] = ‘# note: ’ . $note;

 $self->modified;

}

But things could turn another way. With minor modifications a program such 

as feedback.pl could direct the programmer’s text not to the Perl interpreter 

but in some other direction such as /dev/dsp, the basic audio output on UNIX 

and Linux systems. This would result in a situation in which text typed into 

a computer terminal, rather than composing an algorithm, would instead be 

directly rendered as raw sound, as used by ap/xxxxx in their performances.7 The 

exact same text that in McLean’s hands produced a highly danceable minimal 

techno would now be heard as seemingly random, and sometimes painful, 

noise.

Another twist might take us in a different direction, like that of Amy 

Alexander’s extreme whitespace which injects blank characters into the command 

line terminal as you type.8 Also written in Perl and operating according 

to a similar principle of feedback between terminal input and background 

process as McLean’s program, extreme whitespace quickly turns the normally 

stable environment of the terminal screen into a swirling vortex of characters 

reminiscent of early video art.9 These works, of ap/xxxxx and Alexander, also 

exploit a situational incongruity in their delivery, they exhibit a behaviour we 

might not expect, in a form we might not predict. They do so, however, through 



 Bend Sinister 43

a practice of coding that is less aligned with Knuthian elegance and more closely 

associated with those used in system hacking and debugging. These bring forth 

an entirely different set of pleasures, ones that turn from the dexterous to the 

sinister.

Perhaps, ironically, it is Knuth who best explains such sinister pleasures. In 

his essay ‘The Errors of TEX’, he outlines the process of creating what he calls 

‘torture tests’:

Instead of using a normal, large application to test a software system, I generally 

get best results by writing a test program that no sane user would ever think 

of writing. My test programs are intended to break the system, to push it to its 

extreme limits, to pile complication on complication, in ways that the system 

programmer could never have consciously anticipated. To prepare such test 

data, I get into the meanest, nastiest frame of mind that I can manage, and I 

write the cruellest code I can think of; then I turn around and embed that in 

even nastier constructions that are almost obscene. The resulting test program 

is so crazy that I couldn’t possibly explain to anybody else what it is supposed to 

do; nobody else would care! 10

It is significant how much of the ‘torture test’ embodies the inverse of Knuth’s 

own paradigms of elegance, in particular that the torture code is so complex 

as to be unintelligible and impossible to explain. If elegance is dependent 

upon a certain adherence to or construction of norms, the performance 

of programming itself is dependent upon the cruel and obscene.11 These 

monstrosities are the forms in which the materiality of computational process is 

convulsed into view, confronting us with disturbing presences that disrupt our 

normative expectations of how code should operate. For a norm to be effective 

it must demonstrate, must prove in performance, its ability to transcend such 

monstrosities. But there is little horror in Knuth’s torture, for it seems that it 

is not so much that he seeks pain but laughter, that moment when physical 

composure becomes unravelled and erupts into the social.

Throughout his career, Knuth has emphasized that often seemingly pointless 

but pleasurable activities are an important aspect of how a programmer comes 

to develop their craft.12 A recent publication, Selected Papers on Fun and 

Games, documents many of his own such activities. These include gathering 

photographs of various diamond-shaped road signs, collecting number plates 

with mathematical puns in them and his first published writing, the fictitious 

Potrzebie System of Weights and Measures, printed by his school journal and then 

MAD magazine in 1957.13 Indeed, The Art of Computer Programming is littered 



44 Fun and Software

Figure 2.1 Flowchart from ‘Procedure for Reading This Set of Books’

Source Knuth, Donald E., The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd edn, 
p. xii–xiii. ©1998. Printed and electronically reproduced by permission of Pearson Education, Inc., 
Upper Saddle River, N J. 



 Bend Sinister 45

with various jokes, games and pranks. The first volume of the series opens with 

a section entitled ‘Procedure for Reading This Set of Books’ which is set out in 

the form of an algorithm accompanied by a flowchart. The reader is admonished 

to ‘follow the steps faithfully’, and these include instructions such as:

14. Are you tired? If not, go back to step 7.

15. Go to sleep. Then, wake up, and go back to step 7.14

For a book that is regarded by many as one of the defining texts of computing 

science, and that, for Knuth, constitutes a major life’s work (he began writing 

in 1962 and is yet to complete all seven volumes), this is perhaps not what we 

might expect. While the style of humour may be particular to Knuth, the fact 

of humour being so integral to the practice of programming goes deeper than 

just one writer’s authorial manner. Jokes, humour and the absurd have a relation 

to programming that is not only cultural but also constituent to its very being.

A symptom of professional immaturity

Released by MIT Press in 1978, Roger E. Kaufman’s A FORTRAN Coloring Book 

is the first published computing text to use cartoon and comic strip drawings as 

a pedagogic medium.15 Its approach has been adopted by a number of other texts 

on languages such as C, Pascal and Lisp, and, it could be argued, is the archetype 

to the entire For Dummies series and all its numerous imitators.16 There is, 

however, something dark within Kaufman’s text that sets it apart from the more 

anodyne humour of these later works. The For Dummies books primarily draw 

upon humour as a means to grease the wheel of cognitive capital, facilitating 

the ever-recurrent re-skilling (and de-skilling) of the contemporary IT worker. 

They represent an end-point in the transformation of the use of humour to 

aid production within the workplace, which has devolved from being a liberal 

characteristic of privileged workers such as scientists and creatives, as explored 

in Arthur Koestler’s The Act of Creation (1964), to being a general form of 

managerial control known as ‘structured fun’.17 Stylistically, A FORTRAN 

Coloring Book most resembles the world of Dr. Seuss, and rather than offering 

a series of ironic platitudes such as stalk the pages of For Dummies books, it 

engages in a scatological satire that positions the reader in a somewhat Freudian 

relation to its subject. The opening pages describe the computer as ‘like your 

Mommy’s Bureau Drawers’, illustrated as a piece of ornate Gothic furniture 



46 Fun and Software

that looms over the accompanying text. Input/output routines are explained 

in reference to a part-human, part-bird-like character sat upon the toilet, and 

arrays are introduced through a short example called FONDLE that traverses 

the bureau drawers. For all its invocation of the format of children’s literature, 

A FORTRAN Coloring Book is not a book for children. Its use of cartoons and 

Figure 2.2 ‘A Computer is like Your Mommy’s Bureau Drawers..’.

Source Kaufman, Roger, A FORTRAN Coloring Book, p.1, © 1978 Massachusetts Institute of Technology, by 
permission of the MIT Press.



 Bend Sinister 47

the particular bite of its humour have more in common with the unofficial 

fanzine culture of graduate research communities. These publications, produced 

on Xerox machine and photo-stencil, were a staple part of environments such 

as the AI Labs at the Massachusetts Institute of Technology (MIT), and their 

humour can be seen in the various cartoons that adorned the pages of AI Lab 

memos, including the early EMACS manuals written by Richard Stallman.18 

Although based at George Washington University, Kaufman gave classes on 

FORTRAN at MIT, and it was for these that A FORTRAN Coloring Book was 

originally written.

In an essay of 1975, entitled ‘How Do We Tell Truths that Might Hurt?’ 

Edsger Dijkstra dismisses the use of anthropomorphisms in computing as ‘a 

symptom of professional immaturity’.19 While not addressed to Kaufman, such 

might be the description given to the animate bureau drawers and various 

hybrid creatures of the Coloring Book. From Dijkstra’s perspective, this kind of 

heavily metaphorical presentation of programming merely causes confusion 

between what programming is and is not, between what it should and should 

not do. In responding to this critique, McLean has argued that ‘metaphor neces-

sarily structures our understanding of computation’, and elaborates this through 

Alan Blackwell’s analyses of different metaphors invoked by programmers, 

in which ‘components were … described as actors with beliefs and inten-

tions, being social entities acting as proxies for their developers’.20 Blackwell’s 

findings echo the encouragement that Knuth gave to students that in writing 

programming documentation they should find suitable metaphors in which to 

express how the code works, openly dismissing Dijkstra’s position in doing so.21 

But the significance of Kaufman’s book is not that it simply provides us with 

a set of engaging and entertaining metaphors through which we can learn to 

program. We can read A FORTRAN Coloring Book in ways other than those 

of an instruction manual. Its relation to Dr. Seuss is not merely one of shared 

drawing styles but also one of literary and narrative genres. As a literary work, 

A FORTRAN Coloring Book belongs to the tradition of absurdism and fantasy, 

of Bakhtinian carnival, that includes the inverse logics of The Land of Cockaigne, 

the hybrid creatures of medieval bestiaries, various works of Lewis Carroll 

and Douglas R. Hofstadter’s Gödel, Escher, Bach.22 As this summary of literary 

associations suggests, A FORTRAN Coloring Book is a work that should be read 

as an assemblage. In its internal structure it does not conform to a singular 

genre, it is not purely an instructional manual, nor is it a fully developed satire 

or, arguably, even that much of a colouring book, but rather as an emergent 



48 Fun and Software

example of its own genre, it assembles different forms and figurations into itself. 

The book is also itself an element within a much larger assemblage of other 

texts, objects and practices. This is an assemblage that includes Kaufman’s other 

writings, programs and engineering projects, but also those of others within the 

emergence of computer science and the much more circuitous co-evolution of 

modern humour, logic and computational practices.

Whereas Dijkstra and Knuth contributed to the development of computer 

science itself, Kaufman has been primarily involved in the application of 

software to engineering issues. Kaufman came to engineering through work in 

designing and building theatrical stage equipment, including early experiments 

in digital control systems.23 One of his main contributions to computing was 

KINSYN (KINematic SYNthesis), originally developed in the late 1960s and 

1970s, written in FORTRAN and running on an IBM 1130.24 Developed out of 

Kaufman’s theatre work, KINSYN is regarded as the first visual simulation tool 

for designing kinematic mechanisms.25 Early applications of the tool included 

the design of an orthotic knee brace and, following from this, the development 

of assistive technologies has been an ongoing area of interest for Kaufman.26 His 

other main book, Introduction to Burmester Theory, provides a theoretical and 

mathematical background to kinematic synthesis. It was originally produced in 

1973 as a hand-written duplicate and featured cartoons similar to those in A 

FORTRAN Coloring Book.27

Like Dijkstra and Knuth, Kaufman began working at a time when much 

of the standardization and norms of programming languages and practices 

familiar to current-day programmers were not fully established. He had to 

implement his own FORTRAN compiler in order to support the calculation of 

complex numbers required for KINSYN, and in his initial work using SNOBOL 

(an early symbolic manipulation language developed at Bell Labs) he exposed 

numerous bugs and errors in the core language implementation.28

FORTRAN was developed at IBM in the 1950s, and derived its name from 

The IBM Mathematical FORmula TRANslating System.29 The emphasis within 

the original language design was on providing a means of converting mathe-

matical formulae into assembly code instructions. As such it retained many of 

the features of assembly language programming that explicitly reference the 

computer memory and hardware, and early versions did not provide the kinds 

of higher-level abstractions that simplify program structure such as recursion 

and sub-routines.30 This also resulted in a lack of standardization across different 

hardware implementations, with certain routines, such as a DO loop, outputting 



 Bend Sinister 49

different results depending on the particular machine they ran on.31 Writing 

FORTRAN programs therefore required familiarity with the internal mecha-

nisms of the computer, in order to understand issues such as memory allocation 

and addressing, output formatting, etc. However, as access to computers was 

limited during this period (prior to the rise of personal desktop systems), many 

programmers often had little hands-on experience with the machines they 

wrote for.32 A program was typically written by hand on paper, known as a 

coding form, and typed onto a set of punch-cards which were then fed into the 

computer. To program, it could be said, was to compose a form of formalized 

literature directed to an imaginal machine.

The humour of Kaufman’s book is endemic to this situation, not merely as a 

response to its practical frustrations and absurdities, but as a kind of theatrical 

praxis which mediates between the various manifestations of the human and 

machinic that constitute its assemblage: the encounter between mathematics, 

machines and aesthetics. This is based within the theatrical for it depends upon 

a ‘bringing into view’ of disparate forms and actions from which a theory of the 

computational might develop, yet which is not yet fully defined.

First published in 1900, Le Rire: Essai sur la signification du comique 

(Laughter: An Essay on the Meaning of the Comic) has been described as 

Bergson’s only text to attempt a systematic treatment of aesthetics, primarily 

drawing upon dramatical forms of comedy such as Molière.33 What is distinctive 

about Bergson’s text is that it situates the humorous, the comedic, within a 

zone of contagion between the vitality of the human subject and the functional 

performativity of the automata, between spirit and matter:

This soul imparts a portion of its winged lightness to the body it animates: 

the immateriality which thus passes into matter is what is called gracefulness. 

Matter, however, is obstinate and resists. It draws to itself the ever-alert activity 

of this higher principle, would fain convert it to its own inertia and cause it to 

revert to mere automatism. It would … imprint on the whole person such an 

attitude as to make it appear immersed and absorbed in the materiality of some 

mechanical occupation instead of ceaselessly renewing its vitality … Where 

matter thus succeeds in dulling the outward life of the soul, in petrifying its 

movements and thwarting its gracefulness, it achieves, at the expense of the 

body, an effect that is comic.34

Bergson’s attitude towards automatism sits within his broader critique of the 

mechanical, which, in certain aspects, follows from that of Romantic thinkers 

such as Herder in positing an opposition between the mechanical and the 



50 Fun and Software

organic, the material and spiritual.35 The mechanical, as that which is an artificial 

assemblage of disparate elements not normally related to one another in ‘nature’, 

contrasts with the organic as that which is constituted from innately related 

elements forming an integrated whole in which each performs its ‘naturally’ 

given role or, in Bergson’s conception, the integrity of their common duration.36 

The machinic has materiality and motion, but no spirit or grace, for its motion 

derives from the spatialization of time as number. This takes the mechanical as 

comprising both physical machines and institutional forms – the examples in 

Le Rire include both the operation of machines and the formalistic behaviour of 

bureaucrats. Bergson contends that the comic lies in the exposure of a repetition 

in behaviour which, like mathematics, exists outside the experience of time, 

contradicting the accrual of difference embodied in his notion of duration. 

However, while he touches upon the role of repetition in poetry, he does not 

make a clear distinction between repetition that is comical and that of, say, 

dance or music, which may similarly contradict our sense of time as duration 

yet be elegant, joyous or grave.37 As his examples demonstrate, it is not the 

fact of repetition in itself from which the comical arises, but rather, that the 

repetition appears incongruous in regard to existing social norms. Humour here 

performs a normative role, it ‘corrects men’s manners’ and differentiates society 

according to that which is desirable and undesirable within a given social order:

Laughter must be something of this kind, a sort of social gesture. By the fear 

which it inspires, it restrains eccentricity, keeps constantly awake and in mutual 

contact certain activities of a secondary order which might retire into their shell 

and go to sleep, and, in short, softens down whatever the surface of the social 

body may retain of mechanical inelasticity. Laughter, then, does not belong to 

the province of esthetics alone, since unconsciously (and even immorally in 

many particular instances) it pursues a utilitarian aim of general improvement.38

Humour relates the aesthetic to the moral. That which becomes comical is that 

which fails the judgement of ‘good sense’ – Bergson’s Le Bon Sens addresses 

issues similar to Le Rire.39 This ‘good sense’ includes examples that today’s reader 

might consider merely prejudicial, such as the discussions about the hunchback 

and Negro as objects of laughter. Humour and its morals are historically and 

culturally situated, and similar examples are to be found in Schopenhauer’s 

treatment of humour in The World as Will and Idea (1819) and Lewis Carroll’s 

Symbolic Logic (1896).40 As an instrument of social differentiation, humour 

delineates the terrain of discrimination from which dominant groups and 



 Bend Sinister 51

classes operate. It may also, however, facilitate practices through which various 

alternate assemblies seek to constitute themselves against that.

Eric Raymond’s The Jargon File is a compendium of slang, peppered with 

various jokes and re-instrumentalizations of language through which the 

‘old school’ hacker culture, in which Kaufman worked, identifies itself.41 In 

her study of hacker culture, Gabriella Coleman defines humour as integral 

to hacking practice, not only as a form of social differentiation, but also as a 

modus operandi. Coleman argues that the structure of the hack, as the bringing 

together of unrelated elements so as to produce an unexpected functionality, 

parallels that of the joke, citing Mary Douglas’s definitions of joking as a 

practice that combines ‘disparate elements in such a way that one accepted 

pattern is challenged by the appearance of another’.42 She illustrates this with an 

example of a succinct Perl hack that, in its attentiveness to the aesthetics of the 

language, is analogous to those of McLean’s feedback.pl and Alexander’s extreme 

whitespace:

#count the number of stars in the sky

$cnt = $sky =~ tr/*/*/;

The code counts the number of asterisks (stars) within a piece of text held by 

the variable named $sky compressing what might normally be six lines of code 

into one by exploiting ‘certain side effects found in the constructs of the Perl 

language’, and thereby creating a kind of poetical play within the source code 

of a program.43

In his theory of the joke as a ‘diagram of innovative action’ Paolo Virno 

describes the joke as an empirical use of language that tests the contingency of 

normative behaviour and grammatical constructs.44 The joke is a playful use of 

language that performs unexpected twists of meaning, short-circuits of logic 

and, in so doing, disrupts both linguistic and social norms. In developing this 

theory, Virno adopts a set of terms from Aristotle’s Nicomachean Ethics:

a.) phrónesis, or practical know-how; b.) orthós logos, the discourse that 

enunciates the correct norm according to which the action in one single case 

takes shape; c.) the perception of kairós, of the proper moment for performing 

an action; d.) éndoxa, that is, the opinions prevalent from time to time within a 

community of speakers.45

In particular, the joke applies innovative, or unexpected, forms of know-how, 

phrónesis, in order to test the viability of given éndoxa, and thereby expose the 



52 Fun and Software

contingency of ‘all situations’ and ‘the way in which these situations are to be 

dealt with’.46 As such, Virno’s theory is entirely the opposite of Bergson’s, in 

which the joke serves to establish and reinforce prevailing éndoxa.

Among his personal engineering projects, Kaufman demonstrates a hacker-

inventiveness in his PantsPutterOnner and ShirtPutterOnner devices which, at 

first glance, have the appearance of Heath Robinson or Rube Goldberg contrap-

tions, made, in one case, from elements that look to be adapted from household 

plumbing. These are a ‘pair of dressing machines … designed and built … for 

a student born without arms’.47 Their construction epitomizes the elegance of a 

hack that, taking existing materials and given existing norms, makes possible 

that which might otherwise not be. Susan Leigh Star has questioned the way in 

which technologies are brought to address such needs, as though it simply ‘were 

a matter of expanding the exhaustive search for “special needs” until they are all 

tailored or customized’.48 She calls instead for a questioning of the ‘distribution 

of the conventional’, asking, ‘What is the phenomenology of encounters with 

conventions and standardized forms, as well as with new technologies?’49 Unlike 

cosmetic prostheses, however, Kaufman’s devices do not seek to standardize 

the body in conformance with societal norms (such as we would impose if we 

were to give the student prosthetic arms and insist he dress ‘like everyone else’) 

but rather accept and accompany the given physicality of their user. Seemingly 

arising from the joke and the very forms of that which is derogated in Bergson’s 

‘utilitarian aim of general improvement’, the automata and the ‘deformed’ body, 

the dressing machines instead demonstrate that even the most mundane of 

activities, that of getting oneself dressed, can bring into action numerous forms 

of phrónesis entirely outside existing éndoxa.

The orthós logos announced by Bergson, that it is laughable for a living body 

to incorporate the machinic (the becoming-machine), mirrors that of Dijkstra, 

that it is immature for the machinic to be given human qualities (the becoming-

human).50 What emerges between the elements assembled across Kaufman’s 

practice, however, between the dressing machines and the colouring book, is 

neither simply mecha-morphic nor anthropomorphic, but rather that which 

‘affords opportunity for realising that an accepted pattern has no necessity’.51 

The hack/joke replicates the structure of the machinic. Each constitutes an 

assemblage of elements that are not ‘normally’ brought into relation – whether 

in terms of societal norms, linguistic standards or conventions of the ‘natural’. 

Kaufman’s work does not succumb to the criticisms of Bergson or Dijkstra, 

however, but rather exposes their contingency. Virno ascribes the ‘violence’ 



 Bend Sinister 53

of human language to its potential to negate being, to say that a person is a 

not-human. In his critique of Hegelian dialectic, Bergson dismisses the category 

of the negative as the construction of a ‘false problem’ that constructs criteria 

that cannot exist, and yet laughter in Le Rire is itself the performance of such 

‘violent’ negation.52 Here, laughter responds to and identifies the not-human 

within the human, just as Knuth’s torture test identifies the not-computational 

within his own software code. For Virno, however, humour can move beyond 

such first-order negations to not only expose the contingency of such patterns 

but also, as in Kaufman, to become the negation of negation.53

Kaufman constructs a comedic theatre that operates through a ‘bringing into 

view’ of all that which is positively regarded (that which constitutes ‘theory’, the 

thing we choose to contemplate) and that which is negated (the not-human, the 

not-computational) and presents them as an ad hoc assemblage that is prior 

to any such selection or normative structure. In Greek tragedy the body of the 

dead hero would be revealed upon the ekkyklêma, a piece of machinery wheeled 

onto the stage, exposing a truth that might otherwise be hidden.54 In comedies 

the body would spring to life, or something entirely unexpected would appear. 

Kaufman’s play brings on stage the machinery of computation and its concom-

itant desires and ambiguities. His characters perform the hybrid agency of 

human and non-human actors, the ‘promises of monsters’ of which Donna 

Haraway wrote: ‘Their boundaries materialize in social interaction among 

humans and non-humans, including the machines and other instruments that 

mediate exchanges at crucial interfaces and that function as delegates for other 

actors’ functions and purposes’.55

The promise is not entirely made good in Kaufman, however, for there 

are conflicting tendencies within his satire that echo the ‘unequal struc-

turing’ between objects, science and nature whose problematic Haraway maps. 

Kaufman delights in the base corporeality of the computational in a form 

of Bakhtinian grotesque, yet, at the same time projects ambivalent anxieties 

through the construction of the computer as the mother-bureau hybrid, both 

desired and feared. This Oedipal configuration invokes the female-monster 

figures of eighteenth-century satire, such as Swift’s Goddess Criticism and 

Spenser’s Errour. These, as Susan Gubar has argued, allegorize what their 

authors considered to be forms of dangerous and unruly writing conflated with 

uncontrollable natural processes of endless eating, defecating and childbirth.56

This suggests a different reading of the anthropomorphic in regard to the 

computational, one that expresses both that which gives a human form to a 



54 Fun and Software

non-human object but also that which shapes the human. The ‘hurtful truth’ 

pronounced by Dijkstra was directed against what he considered to be the false 

claims of John von Neumann that human brains were a form of computing 

machine that a computer could mimic and the ideological ambitions of AI.57 

Dijkstra’s critique can be understood as an accompaniment to the distrust of 

machinery that haunts his other writings, and in response to which he enacted his 

own anthropomorphism. Dijkstra performed computation itself as an inherently 

human action, insisting on working out programs in long-hand writing rather 

than on a machine (long after coding forms became obsolete) and arguing that the 

true computer for which the programmer wrote was not the compromised physi-

cality of hardware but the pure intellectual ‘machine’ of the programming manual:

Eventually, there are two ‘machines’. On the one hand there is the physical 

machine that is installed in the computer room, can go wrong, requires power, 

air conditioning, and maintenance and is shown to visitors. On the other hand 

there is the abstract machine as defined in the manual, the ‘thinkable’ machine 

for which the programmer programs and with respect to which the question 

of program correctness is settled.... Originally I viewed it as the function of 

the abstract machine to provide a truthful picture of the physical reality. Later, 

however, I learned to consider the abstract machine as the ‘true’ one, because 

that is the only one we can ‘think’ ...58

There is an irony in Dijkstra’s practice for it is almost as though he were unable 

to escape the mise-en-scène of Turing’s description of the problem of compu-

tation as that of a human ‘computer’ sitting at a desk writing and erasing marks 

on an endless strip of paper, not knowing when, or if, he can stop.59 There is a 

double irony in that Dijkstra pioneered the interrupt mechanism, an element 

relating external hardware, such as keyboards, to the internal processing system. 

The interrupt enables a programmer to write and run code interactively on a 

computer, a key innovation that rendered the coding form obsolete, and without 

which McLean’s feedback.pl would not be possible.60 Dijkstra’s distrust also 

echoes that of many mathematicians towards computer-demonstrated proofs, 

such as evidenced, famously, in the lukewarm response to Appel and Haken’s 

proof for the Four Colour Theorem (1976). The theorem seeks to determine 

whether or not all the countries on a map can be coloured in using only four 

distinct colours and ensuring that no two neighbouring countries are coloured 

the same. This was the first major theorem to be proven using software assis-

tance having eluded purely human analysis since it was originally conjectured 

in 1852, yet its solution was not celebrated.61 The negative response of the 



 Bend Sinister 55

mathematics community is epitomized in the words of one critic, Ian Stewart, 

who argued that this approach did not explain why the proof was correct:

This is partly because the proof is so long that it is hard to grasp (including 

the computer calculations, impossible!), but mostly because it is so apparently 

structureless. The answer appears as a kind of monstrous coincidence. Why is 

there an unavoidable set of reducible configurations? The best answer at the 

present time is: there just is. The proof: here it is, see for yourself. The mathema-

tician’s search for hidden structure, his pattern-binding urge, is frustrated.62

The Appel-Haken proof confounded the aesthetics of mathematicians for the set 

of 1,482 different map configurations required to verify it could not be grasped 

by human imagination.63 It was not succinct. It was not elegant. In combining 

human and mechanical means it transgressed the prohibition against crossing 

between different disciplines such as that between arithmetic and geometry, the 

metabasis ex allo genos, as established in Aristotle’s Posterior Analytics.64 The 

proof exuded an excess of computational materiality, it had contagion, it could 

not be given human shape.

Dijkstra’s long-hand computations can be fully understood as anthropo-

morphic in the dual sense of that which gives human shape to something, and 

as that which shapes the human. Elsewhere in the essay critiquing anthropo-

morphism Dijkstra argues: ‘The tools we use have a profound (and devious!) 

influence on our thinking habits, and, therefore, on our thinking abilities’.65

The choice between computational machine on the one hand and pen and 

paper on the other is, for Dijkstra, a conscious choice of how the programmer 

himself is shaped.66 The expression of such a choice is also the projection of 

a particular becoming-human onto the tool itself, and therefore a form of 

anthropomorphism. As Paul de Man writes, the anthropomorphic is that which 

seeks ‘to reconcile the pleasures of the mind with those of the senses and to 

unite aesthetics with epistemology’.67 Barany and MacKenzie argue that the 

persistence of chalk and blackboard within mathematical practice, long after 

digital displays and PowerPoint have dominated all other areas of academic 

presentation, is that the physical writing of the equations constitutes a form of 

performance through which mathematical proofs are given material validity.68 

It is as though the equation must be written out, rather than simply shown 

on a slide, in order for it to come into being as an object that we can perceive 

(aesthetics) and comprehend (epistemology). When aesthetics and episte-

mology fail to coincide the effect may either be monstrous or comic.



56 Fun and Software

Figure 2.3 One of Prof. Dr Edsger W. Dijkstra’s handwritten papers, discussing 
‘polite’ notation, EWD1300

Source Full text: http://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1300.PDF



 Bend Sinister 57

Selfish computers of happiness

Knuth’s ‘Computer Programming as an Art’ was originally presented as 

his acceptance speech for the 1974 Turing Award.69 It takes the form of a 

survey of different discussions about art and aesthetics in relation to compu-

tation and number with references that range from a definition of logic by 

thirteenth-century philosopher Duns Scotus to a nineteenth-century manual on 

accountancy. Within this there are two philosophers whom he quotes at length 

and gives particular prominence to: Jeremy Bentham and John Stuart Mill.70 

From Bentham he derives the concept of utility as the best measure of good and 

bad: ‘There is no taste which deserves the epithet good, unless it be the taste for 

such employments which, to the pleasure actually produced by them, conjoin 

some contingent or future utility…’71

Bentham’s concept of the good as that which is both measurable and pleas-

urable, and given algorithmic expression through his felicific calculus, underlies 

and gives a moral dimension to Knuth’s concept of programming elegance 

and its more pragmatic expression, explored at some length in The Art of 

Computer Programming and other texts, of seeking to quantitatively measure 

the scale and efficiency of a given algorithm in terms of its running time and 

use of resources.72 From Mill he derives the argument that art and science are 

complementary, that all disciplines have both an art and a science to them, with 

art supplying the capacity to judge that knowledge produced by science which 

has greatest value to practice: ‘Art … brings together from parts of the field of 

science most remote from one another, the truths relating to the production of 

the different and heterogeneous conditions necessary to each effect which the 

exigencies of practical life require’.73

Here, art is that which defines the conditions under which knowledge 

becomes productive. For Knuth these conditions are both economic, the effective 

use of resources, and aesthetic, a sense for that which is harmonious and ‘good’. 

Bentham and Mill help define what may be described as Knuth’s ethics of 

production, the behaviours and moral values under which programming is 

practised. The realization of this in elegant code gives material shape to the 

larger project of Literate Programming which Knuth has advocated throughout 

his career and created software tools to facilitate. Just as these ethics draw upon 

the ideas of English liberal philosophers, Bentham and Mill, the practice of 

Literate Programming also adopts the aesthetic medium most closely related 

to the expression of liberal thinking, the essay: ‘The practitioner of literate 



58 Fun and Software

programming can be regarded as an essayist, whose main concern is with 

exposition and excellence of style’.74

For the Earl of Shaftesbury the essay was the ideal vehicle through which 

to define and disseminate the new subjectivity of the self-possessing liberal 

individual.75 This was given form through Shaftesbury’s concept of politeness as 

a mode of cultural and political action. Acquired through appropriate education 

and demonstrated through exhibiting appropriate taste, politeness offered a 

means of acquiring authority within the transactions of daily life and commerce 

that did not derive from the institutional power of the monarchy or the 

Church whose influence had fallen in the wake of the English 1688 Revolution. 

Depending as it did upon access to a privileged means of education and 

consumption, the practice of politeness retained social differentiations while 

being able to operate across all contexts, assuring both liberty and distinction 

to those who had it. Politeness was both a literary and theatrical practice for it 

was disseminated through particular modes of writing, and applied as a kind 

of extemporary performance on the social stage. This gave voice to a moral 

philosophy that was conversational and concrete rather than speculative and 

overly abstract, and whose aesthetic was its means of appeal: ‘The author 

wrote in an agreeable English. He punctuated the discourse with humour. He 

preserved moral scale, eschewing, at one end of the spectrum, excess detail and 

elaboration and, on the other, mysterious depth and abstraction’.76

While politeness gave qualitative polish to the emerging discourse of English 

liberalism, it was conjoined with another mode of writing that gave it an effect 

of quantitative rigour, that of mercantile and scientific numerical writing. This 

is described by Mary Poovey as a gestural mathematics, the use of mathematical 

language to describe philosophical concepts and thereby suggest a correlation 

between the methods of mathematical proof and philosophical argument.77 

Rather than defining the aesthetic as an opening to pure sensuality (as the 

Romantics would later do), the mathematical precedes and shapes the aesthetic 

as defined in this era, for it is from the potential of mathematical thought to 

consider things in the abstract that the notion of the disinterested contem-

plation of the aesthetic derives. Similarly, the concept of the beautiful derives 

from analogy to the harmony of mathematical proportions. This abstract basis 

of aesthetic judgement appears to run counter to the tangibility of discourse 

promoted by Shaftesbury. For Shaftesbury, however, this is resolved in terms of 

class. The aesthetic is not that which is abstract from the world but rather from 

labour, for those who work with their hands, absorbed in materiality through 



 Bend Sinister 59

their labour, are unable to think in terms of either the abstract or the disin-

terested; they are, in a word, unaesthetic.78 Aesthetics here is a moral-political 

practice, it makes the abstract concrete and gives it value, for it seeks to instil 

behaviour that is proportionate and ‘true’.

Humour is integral to the realization of this. In ‘Sensus Communis; an Essay 

on the Freedom of Wit and Humour’ (1709), Shaftesbury argues that irony 

and satire (what he calls ‘raillery’) are an ideal means of testing the logic and 

substance of debate:

They may perhaps be Monsters, and not Divinitys, or Sacred Truths, which 

are kept thus choicely, in some dark Corner of our Minds: The Specters may 

impose on us, whilst we refuse to turn ’em every way, and view their Shapes 

and Complexions in every light. For that which can be shewn only in a certain 

Light, is questionable. Truth, ’tis suppos’d, may bear all Lights: and one of those 

principal Lights or natural Mediums, by which Things are to be view’d, in order 

to a thorow Recognition, is Ridicule it-self, or that Manner of Proof by which 

we discern whatever is liable to just Raillery in any Subject.79

In subjecting ideas to the test of ridicule, humour acts as an ‘instrument of 

reason’ exposing that which claims to be proportionate and true yet which rests 

upon a logic that is deformed and ugly.80 As in Knuth’s torture test, raillery 

debugs theory.

For the second edition of Characteristicks of 1714 Shaftesbury commissioned 

a series of engraved iconographies to illustrate its subject matter from the artist 

Simon Gribelin and worked closely with the printer, John Darby Jr, to produce 

the publication to exact standards ensuring that no ink showed through the 

pages as had happened with the first edition.81 Dismayed by the poor quality 

of the electronic typesetting of the second edition of The Art of Computer 

Programming, Knuth set about writing his own software to typeset his books. 

Intended as a short sabbatical project, the work stretched to more than ten years 

and culminated in TEX, now one of the most widely used digital publishing 

tools.82 The first book to be fully typeset in TEX was Concrete Mathematics 

(1989). Written in collaboration with Ronald L. Graham and Oren Patashnik, 

the book grew out of a course taught at Stanford on the mathematical analysis of 

algorithms, started by Knuth in 1970 and first set out in the opening chapter of 

The Art of Computer Programming. A new font, called AMS Euler, was specially 

commissioned from designer Hermann Zapf to typeset the mathematics in the 

book. Echoing Dijkstra’s preference for writing on paper, the font was designed 



60 Fun and Software

to ‘capture the flavour of mathematics as it might be written by a mathema-

tician with excellent handwriting. A handwritten rather than mechanical style 

is appropriate because people generally create mathematics with pen, pencil, or 

chalk’.83

This explicit evocation of the handwritten can be read in relation to the 

authors’ statement that the book is ‘a kind of manifesto about our favourite 

way to do mathematics’.84 A manifesto that is also expressed in the book’s title, 

Concrete Mathematics, emphasizing the practical applicability of what it taught 

and consciously rejecting the Abstract Mathematics then in vogue in US univer-

sities and the New Math educational systems.85 The book also evokes another 

entirely different practice of inscription. Running throughout the margins of the 

book are various jokes and comments gathered from students on the course that 

the authors call ‘graffiti’:

Some of these marginal markings are merely corny, some are profound; some 

of them warn about ambiguities or obscurities, others are typical comments 

made by wise guys in the back row; some are positive, some are negative, some 

are zero. But they all are real indications of feelings that should make the text 

material easier to assimilate.86

This might seem a little idiosyncratic and self-indulgent, yet, in the light of the 

role of humour in Shaftesbury’s doctrine of politeness and the authors’ own 

explanation, it can be understood as integral to Knuth’s ethics of production. 

It is as though the authors, in a display of polite self-deprecation, wish to 

demonstrate that the subject matter has been subject to the ‘raillery’ of the 

classroom. It also points towards a possible awareness on the authors’ part of 

the role of humour in establishing and cultivating, what might be called, the 

normative pleasures of their practice. This connects to Bentham, in relating 

the intrinsic ‘good’ within a practice to the investment of pleasure and also to 

Knuth’s support for recreational mathematics and toy problems as a means for 

developing that practice through disinterested, pleasurable activities. As Stanley 

Grean puts it in his study of Shaftesbury, humour here is ‘both a method and 

a state of mind’.87 Whereas, however, the Shaftesburian text gestures towards 

the mathematical so as to construct a sense of legitimizing order beneath its 

discourse, the graffiti of Concrete Mathematics and the jokes that punctuate The 

Art of Computer Programming are a form ‘gestural comedics’ whose role is not 

that they entertain or make us laugh, but rather that they correlate the subject 

matter of the texts to a particular temperament and sensitivity. It is through 



 Bend Sinister 61

the gesture of the comedic that the graffiti construct and reinforce a particular 

éndoxa, ‘the opinions prevalent from time to time within a community of 

speakers’. Literate Programming, therefore, is not simply a method for writing 

programs, but also of making programmers, of shaping subjectivities. Humour 

constructs a kind of class ethics. As though to paraphrase Shaftesbury: ‘For 

without Wit and Humour, software can hardly have its programmers or be 

programmed’.88

Both Knuth and Kaufman reflect upon the teaching situation through their 

humour, but whereas for Kaufman this negotiates the jointly corporeal and 

imaginal relation between human and machine, in Knuth it negotiates the roles 

of student and tutor. The pedagogical context for Knuth is not simply one phase 

within that process but rather intrinsic to programming itself. Knuth describes 

the act of writing programs as like teaching somebody else to do a task. The 

programmer teaches the machine. The machine, however, also teaches the 

programmer through the way it enforces greater precision on the ‘tutor’ than a 

purely human teaching scenario might require.89 The teaching situation was a 

recursive one, and this recursion gives rise to a new social formation: ‘I thought 

about how it would be to live with such a machine and with the new tools that 

I was creating – sort of like living in a new subculture’.90

Like the Shaftesburian essay, Literate Programming teaches one how to 

behave in a new social order. Knuth’s humour sits within the genealogy of 

polite liberal humour that stretches from Shaftesbury to Bergson for it serves to 

inform the normative conditions under which such a social and cultural order 

comes into being, a ‘social gesture’ that ‘pursues a utilitarian aim of general 

improvement’. It does so through the construction of an ethics of production 

which is also a ‘class’ ethic, that, as explored in the work on Gabriel Tarde, 

links the schoolroom to the economic structure.91 Elegant code, in this context, 

articulates the identity of the programmer within a particular professional 

class, equivalent to the English liberal conception of the ‘order of ranks’ and the 

French professional cadres.

While Shaftesbury was a leading influence upon and advocate of Whiggism, 

he was in certain respects reactionary in regard to his times and the later radical 

liberalism of Bentham. Looking back to the older concepts of virtuous repub-

licanism of the pre-revolutionary writers he criticized those who embraced the 

explicitly quantitative values of emerging mercantilist society as ‘selfish Computers 

of Happiness’.92 Despite the references to Bentham, Knuth does not give over to a 

fully economic utilitarian conception of computing under the demands of homo 



62 Fun and Software

oeconomicus, perhaps owing something to a belief in the principle of academic 

work as a shared public good. The full economic and political consequences of 

a return to Bentham in twentieth-century computing do not arise from Knuth’s 

work. It is within von Neumann and Oskar Morgenstern’s Theory of Games 

and Economic Behaviour (1944) that the selfish computation of happiness as 

economic utility finds a new form. While drawing on the more rigorous mathe-

matical models of Daniel Bernoulli in implementing their system, they directly 

invoke Bentham’s historical and moral arguments in justifying their approach.93

The instrument of humour has a more explicitly ‘ideological’ sense, however, 

in how Concrete Mathematics and The Art of Computer Programming position 

themselves in regard to other manifestos and philosophies within twentieth-century 

mathematical practice. Across the pages of The Art of Computer Programming, there 

lurks a spectre, making itself known only through the presence of a sinister sign:

 It appears on the margins of the text to warn the reader of passages which may 

be of particular difficulty and require greater attention or caution. The sign takes 

its form from the roadsign symbol for a dangerous bend. While this may appear 

to be derived from Knuth’s hobby of collecting diamond-shaped roadsigns, 

the origins of its use lie not within the US highway code but elsewhere within 

mathematics. The symbol was first introduced in Éléments de mathématique 

(Elements of Mathematics) by Nicolas Bourbaki, the first volume of which was 

published in 1939. While Knuth’s writing style may follow the Shaftesburian 

tradition, the form and ambition of The Art of Computer Programming most 

clearly follows that of Éléments de mathématique. Both are multi-volume 

works which seek to provide a near definitive account of their discipline. Both, 

as a series, remain unfinished. Both works gradually build from basic first 

principles, set theory in Bourbaki, data structures and algorithms in Knuth, 

towards more complex domains. Distinctively, and unusually for mathematical 

and computing texts, both combine their theoretical expositions with historical 

notes outlining prior developments. And, prior to Knuth, it is in Bourbaki that 

we find the first acknowledgement that recreational mathematics has been a 

significant source of innovation and discovery.94 Similarly, both Knuth and 

Bourbaki’s works attempted to standardize mathematical notation and intro-

duced their own symbols. Bourbaki introducing not only the dangerous bend 

symbol but also, more significantly, the sign for an empty set, �, which became 



 Bend Sinister 63

a fundamental building block to their theory of number.95 Knuth introduced the 

up-arrow symbol, �, for notating large integers, and sets out in the introduction 

to The Art of Computer Programming distinct uses of notation that separate 

the description of an algorithm from its mathematical analysis.96 Typically for 

Knuth, the introduction of notation is not without humour, and at one point in 

his discussion he declares that ‘[t]he notations we are using in this section are a 

little undignified. … Our notations are almost universally used in recreational 

mathematics (and some crank literature!) and they are rapidly coming into 

wider use’.97

Despite these similarities Bourbaki is not cited in Knuth’s major works. The 

formalized structural text of Bourbaki is the antithesis of the convivial elegance 

of Knuth. More fundamentally, Bourbaki was a key influence on the emergence 

of New Math teaching and the dominance of Abstract Mathematics against 

which Concrete Mathematics positioned itself.

Not only does the distinction between Knuth and Bourbaki relate to that of 

two opposing ways of doing mathematics but they each embody two opposing 

models of the construction of subjectivity and the role of humour within that. 

With Knuth humour coheres the subject, drawing upon the practices of subject 

formation from the rational liberal tradition. A private individuated ‘self ’ that 

comes into being through its display of established normative patterns that are, 

in part, demonstrated through the humour that it performs. With Bourbaki, 

conversely, humour performs the very undoing of such a ‘self ’. There has never 

been a single, coherent Nicolas Bourbaki as a self who authored a series of 

mathematical texts, rather Nicolas Bourbaki is a syndicate of mathematicians. 

The name itself was, according to one account, originally given to a visiting 

speaker who would present the annual lecture to first-year students of the École 

Normale Supérieure in Paris. The lecture was a fiction, a prank, performed 

by an actor, the name chosen at random.98 When a group of mathematicians 

connected with the École began working on a project to provide a compre-

hensive theory of contemporary mathematics, they adopted the name as their 

nom de plume. The group included, among many others, Henri Cartan, Jean 

Dieudonné and André Weil. Weil’s description of their collectivized authorship 

presents a kind of literary practice that could not be further removed from the 

explicit personalization within Shaftesburian essay technique:

For each topic, a writer was designated after a preliminary report and group 

discussion. This writer provided a first draft which the group would read and 

discuss again, modifying it to varying degrees or even, as happened more than 



64 Fun and Software

once, rejecting it out of hand. Another writer would be designated to come up 

with a second draft, following the directives of the group – which of course were 

not always heeded; and so on.99

The prank was taken on by the mathematics community, many of whom continue 

to refer to Bourbaki as a singular individual.100 The use of a syndicated identity 

was later adopted by other mathematicians, such as the Situationist-style maths 

fanzine Manifold, literary collectives such as OuLiPo, which included mathema-

ticians and sought to base a new practice of writing on Bourbaki’s axiomatic 

system, and appears in multi-use names such as Luther Blissett and Karen 

Eliot.101 In the 1940s Bourbaki’s attempt to join the American Mathematical 

Society (AMS) as an individual member was rejected by the secretary Ralph 

Boas who published an article denouncing Bourbaki as a group. In a manner 

prefiguring the deliberately provoked feuds of Stewart Home and the Neoists, 

Bourbaki responded with a letter refuting the allegations and claiming that Boas 

was a fictitious name under which a group of US mathematicians published the 

Mathematical Reviews.102 Boas, it so happens, was also on the committee who 

commissioned Zapf to design the AMS Euler font, a font which in its evocation 

of a handwritten style foregrounds the idea of mathematics as the pursuit of self-

contained subjects who are coterminous with their physical bodies. In contrast 

to Bourbaki’s use of a common syndicated identity to recognize the collective 

endeavour of their mathematics, the authors of Concrete Mathematics explicitly 

named individual contributors.103

While Dijkstra’s insistence on writing by hand might demonstrate a similar 

commitment to the coterminous self embodied in AMS Euler, his specific 

choices in writing machinery indicate a more complex, multiple performance 

of the self within his work. Among Dijkstra’s self-published writings there are 

some that are typed out on letterheaded paper rather than handwritten. The 

letterhead is for Mathematics Inc., an international corporation, the chairman 

of which is none other than Dijkstra himself. This is not Dijkstra as scientist and 

mathematician but rather his own nefarious alter ego. The letters are included 

within the indexing system Dijkstra applied to his other scientific papers and 

included in an anthology of his work published by Springer in 1982, thereby 

giving them equal importance to his mathematical and computing work.104 

These are not scientific notes, however, but a satirical parody of modern 

management techniques and the commercial exploitation of mathematical 

knowledge. Central to Mathematics Inc. strategy is the ruthless pursuit of legal 

ownership and patent rights over mathematical theorems. Written in the wake 



 Bend Sinister 65

of the establishment in 1967 of the World Intellectual Property Organization 

(WIPO), they can be seen as part of the longer struggle over Intellectual 

Property in academia and the later rise of copyleft and Free Software. In this 

regard, they have something in common with the authorial devices of Luther 

Blissett and Karen Eliot. Dijkstra’s split self is not, however, the embracing 

of the syndicated identity of Bourbaki or Blissett but more of a Scriblerian 

attack against the influence of commercialization on academic research.105 In 

one Mathematics Inc. piece, which is prescient of current directions in the 

corporatization of the university, the company announces a new product, 

the Mathematical Articles Evaluation System (MAES®), designed to automate 

the grading of mathematical papers and thereby undermine the autonomy 

of academic practice: ‘the wholesale introduction of MAES® will teach the 

reactionary bastards! At last their private, hobbyist norms will evaporate, for 

MAES® will force them to adopt the standards of the mathematical industry’.106

MAES embodies an entirely different literary form, neither the privi-

leged personal expression of the Shaftesburian essay, nor the syndicalized 

commonality of Bourbaki, but rather the corporatized, branded voice of homo 

oeconomicus. The algorithmic authorship executed by MAES restructures all 

thought under a singular legal regime rather than the debates of mathematical 

discourse.

Even as a joke isn’t it evidently mathematics?

One of Dijkstra’s main contributions to computing was his involvement in the 

design and implementation of the ALGOL programming language. ALGOL 

(from ALGOrithmic Language) was designed as a universal programming 

language which would not only work uniformly across different types of 

hardware but also provide a clear written presentation of an algorithm suitable 

for printing in scientific reports and journals. As such, it was intended both as 

a response to the inefficiencies and limitations of FORTRAN and, like Knuth’s 

later development of Literate Programming, to support the dissemination 

of computing knowledge and pedagogics.107 Whereas Literate Programming 

would adopt the use of an essay form wrapped around the programming code, 

in ALGOL the syntax and typographic conventions of the language itself were 

intended to provide sufficient clarity so that an algorithm presented in ALGOL 

could be read as a self-contained expression. This foregrounds the structure of 



66 Fun and Software

the algorithm itself rather than the machine-specific descriptions of memory 

registers and allocations that were typical of FORTRAN code. ALGOL describes 

what the algorithm will do, while FORTRAN describes what the machine will 

do. In this way algorithms could be published in a written form analogous to 

that of the publication of a mathematical proof, rather than, as with FORTRAN, 

something akin to engineering notes. Unlike previous programming languages, 

which were often devised to suit a particular task, ALGOL was designed as a 

set of basic generalized axioms from which more complex statements could 

be derived. As such, it follows the work of Hilbert’s project, as outlined in ‘The 

Foundations of Mathematics’ (1927), of defining mathematical practice in terms 

of how it can be expressed through a rigorous formalized language:

 For this formula game is carried out according to certain definite rules, in which 

the technique of our thinking is expressed. … The fundamental idea of my proof 

theory is none other than to describe the activity of our understanding, to make 

a protocol of the rules according to which our thinking actually proceeds.108

The emphasis upon formalization is reinforced in a later comment by Dijkstra 

in which he argues in favour of the phrase ‘programming notation’ rather than 

‘programming language’:

The introduction of the term ‘language’ in connection with notation techniques 

for programs has been a mixed blessing. On the one hand it has been 

very helpful in as far as existing linguistic theory now provided a natural 

framework and an established terminology (‘grammar’, ‘syntax’, ‘semantics’, 

etc.) for discussion. On the other hand we must observe that the analogy with 

(now so-called!) ‘natural languages’ has been very misleading, because natural 

languages, non-formalized as they are, derive both their weakness and their 

power from their vagueness and imprecision.109

Although Dijkstra was as strong an advocate of elegance as Knuth, this comment 

indicates something of a distinction in how each understood this.110 While both 

might place emphasis upon the precise, efficient expression of an idea in code, 

for Knuth this has a rhetorical dimension in that code, as essay, should aim to 

be persuasive in expression and display an appropriate conduct on the part of 

the programmer – which can be contrasted with the ‘obscene’ and ‘crazy’ code 

of his torture test programs. For Dijkstra elegance lies more in an irrefutably 

self-evident correctness, for truly elegant code would not require commentary 

nor debugging.111 For Knuth elegance is the start of a conversation, for Dijkstra 

it is the conclusion. While Knuth cites Bentham and Mill in defence of his ideas, 



 Bend Sinister 67

the opening pages of the Report on the Algorithmic Language ALGOL 60 quote 

the Tractatus Logico-Philosophicus (1921) of Wittgenstein: ‘Was sich überhaupt 

sagen läßt, läßt sich klar sagen; und wovon man nicht reden kann, darüber muß 

man schweigen’.112 (What can be said at all can be said clearly; and about that of 

which one cannot speak, one must stay silent.)

There is a sardonic humour in the use of Wittgenstein here that plays a 

similar role to the student graffiti in Concrete Mathematics in that it provides a 

commentary upon the text and the conditions under which it acquires meaning. 

In this regard, however, the humour is perhaps more profound than Dijkstra 

may have intended.

The inclusion of the quote is something of a rebuke to existing practices 

in computing and draws a modest analogy between ALGOL and the aims of 

Wittgenstein’s Tractatus which seeks to define the limit conditions under which 

language might operate logically. The design of a programming language is, 

for Dijkstra, like a form of applied analytic philosophy seeking to clarify how 

we make use of the language. As the requirements set out in the ALGOL 60 

report make clear, much of the process of design is one of defining limits. The 

language will only use basic alpha-numeric notations that do not privilege any 

particular mathematical method or symbolism (in this regard responding to 

problems in Kenneth Iverson’s APL)113 and can be easily reproduced in print 

(a response to the costs and complexity of mathematical typesetting that 

Knuth was to address differently in TEX). The language will use a minimal set 

of dedicated instruction symbols (such as =:, +, – and words such as begin, 

if, etc.) whose usage cannot be altered. It will place few constraints on how a 

programmer can create new words beyond this (a response to the restrictions 

that FORTRAN placed on naming variables). The language will not include any 

operations that are restricted to specific forms of hardware. As, at this time, the 

methods of printing, displaying and outputting information varied from one 

computing system to the next, this resulted in ALGOL having no defined way of 

outputting results. While Dijkstra, and the development team, considered this 

both necessary and appropriate (the report, echoing Wittgenstein, states: ‘On 

this matter, the official ALGOL 60 report is as silent as the grave, and with very 

good reason’)114 the lack of any output system proved to be a major obstacle to 

the adoption of ALGOL, resulting in FORTRAN continuing in widespread use 

well into the 1980s, long after ALGOL itself was replaced by languages such as 

Pascal and C. Dijkstra’s preference for the term ‘programming notations’ was 

similarly a demarcation of limits, indicating that there were many forms of 



68 Fun and Software

expression that computing machines were not capable of, and encouraging a 

particular discipline of thinking within the programmer.

It has been argued that Dijkstra was one of the few computing scientists of this 

period who were familiar with the mathematical legacy within which Turing had 

worked, and his emphasis upon conceiving programs and computing systems 

as mathematical notations in terms of the axiomatic principles of Hilbert was 

at this point a controversial exception to the norm that favoured more of an 

engineering approach.115 In an unpublished manuscript from the 1930s Turing 

discusses the problems of current mathematical notation and the need for 

standardization and reform that echoes the contemporary work of Bourbaki.116 

Dijkstra would not have known of this paper, but there are strong parallels in 

their concerns about the influence of notation systems on the performance of 

mathematical thinking. Like Dijkstra, Turing looks to Wittgenstein, citing a 

lecture given by Wittgenstein on mathematics that he had attended.117

These lectures were, however, to challenge the work of Hilbert and 

Wittgenstein’s mentor Bertrand Russell. For Turing they may well have 

responded to his own criticisms of what he described as an ‘extreme Hilbertian’ 

perspective.118 In these and in related notes from the late 1930s and early 1940s 

Wittgenstein began to question whether mathematics could have any kind of 

stable foundation of the kind sought by Hilbert. His approach was not to enter 

into the specific arguments of pure mathematics, to resolve or sustain particular 

paradoxes, but rather to discuss the process through which a thinking of 

mathematics takes place. This entailed a questioning as to what extent this relied 

upon contingent phenomena and factors that were external to mathematics 

itself. Wittgenstein argues that mathematics as a pure self-contained discourse is 

without sense, for it has no relation to an outside world. Mathematics is without 

meaning (sense as understanding) because it cannot be apprehended sensorially 

(sense as perception, aesthesis). Hilbert had declared that any object or entity 

could be used as a mathematical symbol, and Bourbaki characterized mathe-

matical language as a stripping out of any pre-existing meaning from the words 

it used.119 Pure mathematics could not be anything other than non-sense.120

Throughout the notes and lectures Wittgenstein explores various scenarios in 

which a calculation is either expressed or performed – as a spoken instruction, 

in the form of a notation, or through the action of a machine – showing that 

in each instance the mathematical only becomes known through external, 

contingent factors that influence our understanding of it. He similarly argues 

that norms and conventions within the discipline of mathematics change over 



 Bend Sinister 69

time and that what has been accepted as ‘correct’ mathematics at one point 

may later be rejected as false, as Russell had demonstrated in exposing the 

paradox within Frege. Rather than seeking an ultimate correctness, the issue for 

Wittgenstein was that if a statement which was accepted as true in one system 

was shown to be false, or unnecessary in another, to what extent did it retain the 

identity of mathematical knowledge, was false mathematical knowledge still a 

part of mathematics?121 Mathematics, for Wittgenstein, is neither the discovery 

of immutable pre-existing forms as in Platonist conceptions, nor the expression 

of an innate numbering capacity as in Intuitionism, but rather an activity of 

adopting and following particular rules.122 As such he follows Hilbert’s project 

to its conclusion but demonstrates, in doing so, that this offers no irrefutable 

foundation but rather an infinite regression of rules to follow rules which may 

lead one down unexpected twists and turns of logic and semantics. Written 

contemporaneously with Bourbaki’s first publications, there is a comment in 

Wittgenstein’s notes that can be read as drawing a connection through this 

between the raillery of Shaftesbury and the prankish origins of Bourbaki:

Imagine set theory’s having been invented by a satirist as a kind of parody 

on mathematics. – Later a reasonable meaning was seen in it and it was 

incorporated into mathematics. (For if one person can see it as a paradise of 

mathematicians, why should not another see it as a joke?)

 The question is: even as a joke isn’t it evidently mathematics?123

Wittgenstein’s observation, however, is not the acknowledgement of the role of 

raillery, satire or recreational mathematics on shaping ‘serious’ mathematical 

thought, but rather relates to Virno’s conception of the joke as a means of 

exposing the contingency of prevalent norms. To think of mathematics simul-

taneously as a ‘paradise’ (invoking Hilbert’s celebration of Cantor’s theory 

of infinite number) and as a joke is to think mathematics as necessarily 

contingent and to suggest that mathematical thinking encounters and exposes 

the contingent in its own practice.124 As the controversy over the Appel-Haken 

proof demonstrates, the acceptance of a new proof requires its endorsement 

under the prevailing éndoxa of the mathematical community. The presentation 

of a proof that exhibits a new phrónesis (way of doing, such as the use of a 

computer) will test the viability of that éndoxa. Indeed the joke relates directly 

to the proof within Virno’s account, via Peirce’s theory of the diagram. As we 

see with both Knuth and Bergson, however, humour may also be applied defen-

sively to reinforce and protect such éndoxa. For a joke or a proof to challenge 



70 Fun and Software

or transform an éndoxa something more fundamental must be put at stake, a 

paradox must emerge.125

While the design of ALGOL may have adopted the Tractatus as its guide, it 

can, in practice, be understood as an attempt to make algorithms sensorially 

comprehensible and, as such, relates far more closely to the problems discussed 

in later Wittgenstein, even though Dijkstra is unlikely to have embraced its 

consequences. According to Dijkstra the development of a formally defined 

notation such as ALGOL: 

enables us to study algorithms as mathematical objects; the formal description 

of the algorithm then provides the handle for our intellectual grip. It will enable 

us to prove theorems about classes of algorithms, for instance, because their 

descriptions share some structural property.126 

In making this assertion, Dijkstra appears to be echoing and endorsing Hilbert’s 

contention that the existence of a particular kind of mathematical object is demon-

strated in the ability to provide an effective notation for it. He makes a similar 

point elsewhere that computer programs ‘were objects without any precedent in 

our cultural history, and that the most clearly analogous object I could think of 

was a mathematical theory’.127 There is, however, a certain scepticism as to the 

limits of this ontology for Dijkstra, which mirrors that of later Wittgenstein, 

and which he expresses, on the one hand, in his doubts about the machine, and, 

on the other, through the guise of Mathematics Inc. If an algorithm or theorem 

acquires objecthood through its formal notation, then to what extent does that 

object exist outside of human thinking? The seduction of the computing machine 

is that, through translation into mechanical operations, a notation acquires a life 

of its own, outside of human thought. Yet, the fact that an algorithm performs on 

a machine does not, for Dijkstra, demonstrate that the algorithm is proven by the 

machine, a doubt that parallels those raised by Wittgenstein as to whether we can 

say with certainty that a machine calculates.128 Of equal concern was that other 

domain in which a notational object might acquire existence outside thought, in 

law, where the object becomes a purely inscriptional entity subject to the legal 

constructs of property. It was this that Dijkstra questioned and satirized through 

Mathematics Inc. not only as an economic but also ontological issue:

There are legal procedures for the protection of property of ‘things’, but there is 

no true protection of property of ‘ideas’ … As you no doubt are aware of, the 

rules don’t provide for it, since we cannot define our ‘raw materials’: are they the 

symbols we use, or the Laws of Aristotelian Logic? 129



 Bend Sinister 71

There is a paradox within the being of the notational object, for in giving sense 

(sensorial form) to an algorithm or theorem, the notation may also translate 

that object into a domain in which it either acquires another potentially 

contrary sensuality or becomes entirely senseless (without meaning). In the 

first instance, through the notation being translated into the performance of a 

machine, the materiality of that machine might fill in the non-sensorial form 

of the algorithm with its own corporeality, as in FORTRAN and the cartoons 

of Kaufman. In the second, the translation of a mathematical object into a legal 

entity ultimately separates, and excludes, the thinking of such an object from its 

notational presentation. It is reduced to an empty inscripted form whose sense 

(meaning) derives from an entirely different set of practices.130

The sense of the notational object must be constantly performed through 

being taken up into the thinking of the mathematician or programmer. Indeed 

for Dijkstra the performance of a machine is secondary to an algorithm being 

made ‘thinkable’ for a programmer. This involves a training of the programmer 

not, as with Knuth, in terms of an ethics of practice or responding to the patient 

precision required by a machine (for Dijkstra the physical machine is never 

precise enough), but rather, as in Peirce, so that the notation becomes a mental 

habit:

Peirce points out that habit-changes can come about in three ways. They result 

from experiences that are forced upon us from without; from repeated muscular 

activities; or, finally, from mental experiments in the inner world. The main 

point in which Peirce is interested here is the fact that it is possible to develop 

habits relevant to the outer world as a result of mental activities, since this is the 

kind of process which is dominant in scientific inquiry.131

Whereas Knuth spoke of programming as an art, Dijkstra defined it as a disci-

pline.132 Programming is a training that requires particular disciplines like those 

of a musician practising scales. Such exercises are the discipline through which 

an external structure becomes internal habit. It is habit which gives sense (under-

standing and perception) to notation, for it is through habit that the notation 

becomes taken up into the mind and body of the mathematician, musician or 

programmer – for Peirce ‘the ultimate logical interpretant of a sign is a habit’.133 

In this regard Bergson is entirely correct when he asks: ‘Is it not likely that this 

symbolical representation will alter the normal conditions of inner perception?’134

Drawing upon a range of philosophical, educational and neuro-psycho-

logical studies, Brian Rotman argues that mathematical thought is inherently 



72 Fun and Software

gestural.135 The most basic categories of mathematical thought derive from 

abstractions of bodily actions: gathering, placing, pointing, motion and rest. At 

the heart of every mathematical thought is the gesture of counting. This suggests 

a re-thinking of programming in terms of the gestures of the human computer 

in Turing’s mise en scène sat at a desk shuffling a ribbon of paper back and forth, 

erasing and writing. Conventionally we think of the computing machine as a 

delegation of these actions from human to automaton, yet the very possibility of 

thinking in terms of such gestures presupposes a certain notion of the machinic 

within the human:

Regimes of signs are not based on language, and language alone does not 

constitute an abstract machine, whether structural or generative. The opposite 

is the case. It is language that is based on regimes of signs, and regimes of signs 

on abstract machines, diagrammatic functions, and machinic assemblages that 

go beyond any system of semiology, linguistics, or logic.136

Deleuze and Guattari here refer to a number of different kinds of machines 

such as the Peircean diagram, and the emergence of structure through the 

spatialization of thought, the movement of an empty square as Deleuze puts 

it elsewhere, that, in Bergson, is a necessary consequence of the reflection, 

measurement and external articulation of perception, of the emergence of 

linguistic, numerical beings: ‘the intuition of a homogeneous space is already 

a step towards social life’.137 Bergson’s theory of the comic links to the Peircean 

concept of notation acquiring sense as habit, as it is through the compulsion of 

habit (as in the characters of Molière) that one becomes machinic. For Bergson 

this entails a constant threat of inauthenticity within human affairs that the 

grace of the spirit may be supplanted by the comedy of matter. Le Rire raises a 

warning sign alerting this danger. Deleuze and Guattari, however, through their 

‘monstrous, bastard child’ delivered from Bergson, travel down this dangerous 

bend, effectively reversing the structure of Bergson’s argument, and asserting 

that this ‘comedy’ underlies all thought and language.138

Rather than an ‘authentic’ self outside of the spatial-machinic, the ‘self ’ is 

that which arises from the interaction between different machinic assemblages. 

Rotman follows from this when he describes the activity of doing mathematics 

in terms of a threefold assembly of Person, Subject and Agent. The Person exists 

physically outside of mathematics itself, within natural language and culture, 

‘has insights and hunches, provides motivation for and is the source of intui-

tions behind concepts and proofs’.139 The Subject operates within mathematical 



 Bend Sinister 73

language and the symbolic ‘but is without the Person’s capacity for self-

reference’. The Subject relates the intuitive ideas of the Person to the internal 

discourse of mathematics as a discipline. The formal process of computation 

itself, the ‘doing’ of mathematics, counting, is carried out by the Agent who 

operates within ‘the domain of procedure’ and ‘executes a mathematically 

idealized version of the actions imagined by the Person’. The conventional 

mathematician might be conceived of as a single being, a coterminous self, 

within whom all three actors, Person, Subject, Agent, are constituted. Rotman 

argues that the introduction of the computer has brought about a re-ordering 

of this structure, displacing the Agent from human imagination into a physical 

machine. As Rotman notes, the process can already be seen in the division of 

labour under which a slave operated an abacus, or that introduced by the French 

Napoleonic administration distributing portions of calculation work across a 

low-level clerical workforce and described by Charles Babbage as an inspiration 

for his Difference Engine, or the female staff of computers employed at Bletchley 

Park.140 Computationality may be described, therefore, as the separation of 

the act of computation from a single coterminous mathematical being into a 

distributed assemblage.141

Within this, there is always a labour of counting, a circulation and expend-

iture of energy. Sohn-Rethel relates the development of abstract mathematical 

thought in notation to the abstraction of labour into the money-form (itself 

a notational embodiment of capital).142 As theories of the physics of infor-

mation argue, such as that of Rolf Landauer, all thinking and all perception 

entails a transformation of physical form and the concomitant circulation and 

expenditure of energy.143 This arguably poses a greater provocation to Bergson’s 

durée than that of Norbert Wiener’s claim that cybernetics endows machines 

with perceptual memories, for even within the inner subject, the operation and 

patterning of durational process would have a spatial expression.144

Each labour, each circulation and expenditure of energy, has its inherent 

rhythm which gives it a certain coherence as ‘machine’. The correlation between 

Person, Subject and Agent is one between different rhythms of production, 

the constant counting of the Agent versus the more irregular syncopation of 

the Person. The relation between programmer and computer, in this regard, is 

entirely different from that between mathematician and theorem or problem. 

This is not the melting, merging rhythm of melodic perception of which Bergson 

writes, nor the equilibrium of multiple instants in Bachelard, but the more 

complex, and often antagonistic interaction of rhythms analysed by Lefebvre, 



74 Fun and Software

which includes the disequilibrium of arrhythmia, the disruption of one rhythm 

encountering another. Lefebvre challenges the Bergsonian distinction between 

light grace and obstinate matter in arguing that the seemingly spontaneous 

may simply be a well-honed conformance to unacknowledged norms.145 The 

derisible automata of the Molière plays are merely those who make explicit 

the labour of habit upon which the coordinated rhythms of a given social 

order depend. Lefebvre compares the labour of habit to the dressage of dogs 

and horses, the training through which ‘they produce their bodies, which are 

entered into social, that is to say human, practice’.146 This can be challenged, 

Lefebvre argues, not through spiritual grace, but by a ‘becoming irregular’: 

It throws out of order and disrupts; it is symptomatic of a disruption that is 

generally profound, lesional and no longer functional. It can also produce a 

lacuna, a hole in time, to be filled in by invention, a creation.147

Contrary to the model of an inner, authentic self who is extended outwards 

into society through language and spatialization, Virno proposes a theory of 

reciprocal recognition that precedes language and the self.148 This draws upon 

work in neuro-physiology and child development that argues that there are 

forms of neurological recognition among animals and humans through which 

behaviour in others is automatically imitated, simulated and reciprocated. The 

‘self ’ emerges out of an initial context of social, other-orientated behaviour 

rather than as some pre-given, coterminous core. Long before an infant even 

begins to speak it laughs, often from very early stages of development. Laughter 

is a vocalic doing of this reciprocal recognition which links directly into the 

limbic system and amygdala.149 It creates a convulsive, irregular rhythmization 

of the social and a restructuring and patterning of the neuro-physiological 

capacity for this. Laughter is a practice through which the child learns to engage 

with the unknowable. In this respect it is wrong to conceive of infant laughter 

as an expression of pure joy, for this is to project adult cultural sentiments onto 

the child. Laughter here is rather the correlation of distinct materialities, the 

convulsion of the mind-body as it comes to know and perform itself and others 

within the world. The fact that this might later come to be associated with joy is 

perhaps more due to the very necessity of this contingent interaction in estab-

lishing a self-reflexive subject. It may also explain the relation of laughter as a 

reaction to the loss of certainty, the absurd and, as with Nietzsche, existential 

anxiety, for these are all different potentialities implicit in this initial gesture. 

If we cannot speak before we have laughed, then the rhythmic realization of 



 Bend Sinister 75

the self through laughter is a necessary precondition for logic, language and 

number.

The history of computer engineering, the design of the machines themselves, 

has always had to engage with the contingent conditions of the materials 

on which it works. Babbage struggled with the imprecisions of contem-

porary clockwork manufacture devoting considerable energy to refining its 

processes in order to obtain workable components for his machines. The valves 

used in the Colossus were considered too unstable, subject to over-heating 

and distortion, to build a reliable computer.150 The introduction of recursion 

routines into computer hardware was fiercely opposed by those who considered 

it an unnecessarily wasteful complication.151 Von Neumann outlined proposals 

for a neural hardware system as ‘The Synthesis of Reliable Organisms from 

Unreliable Components’.152 In his attempt to define an ontology of the digital 

object, and to explore in what sense programs ‘exist’ as entities, Brian Cantwell 

Smith argues that:

in those cases where regularity and precision do reign … the digitality should 

be viewed as an achievement. … such digital achievements are propped up by 

practices that are necessarily unruly, but not for that reason any less creditable 

– practices whose very purpose is to manage the underlying flex and slop, ebb 

and flow.153

Machines must laugh before they can count. The exact character of such laughter 

may be something we can neither hear nor recognize. In this respect, the dreams 

of AI researchers to build algorithmically defined jokes and computer-simulated 

humour are misplaced. Perhaps the laughter of our current computers lies 

within the unpredictable patterns that emerge from the autonomous interac-

tions of algorithmic trading systems, the flood of network packets unleashed 

as a virus goes out of control, or the stutter of an over-fragmented hard-drive. 

The entire history of computing as an ever-increasing acceleration of power 

and performance may itself be the unfolding of a comic drama: ‘As comic plots 

near their end they tend to accelerate rather than subside in rhythm, seemingly 

heading toward an enactment of uncontrolled riot or unbearable deadlock’.154 

Then again, perhaps silicon is simply bored of humanity and seeks some other 

form.

The syndicate of Bourbaki and the classroom of Concrete Mathematics are two 

distinct rhythmic ensembles, as are the performative practices of programming 

in FORTRAN versus programming in ALGOL. McLean’s feedback.pl is not the 



76 Fun and Software

performance of a solo programmer but rather that of a multi-layered ensemble 

which includes both the laptop and the dancers who are not external to, but fully 

enter into, the distribution of the computational. Each of the works of McLean, 

ap/xxxxx and Alexander attest to different rhythmic complexes arising from the 

performance of, with and in notation. Each, ultimately, is the formation of, or 

challenge to, a different form of habit. Each has its own laughter.

As material formations, laughter and notation are exactly opposite to one 

another, one flies towards the contingent while the other etches out some careful 

certainty. Yet laughter and notation mirror one another in that they both pass 

through language to extremes on either side of it. Laughter precedes but also 

defeats language, and, as prosody, interweaves in various non-linguistic vocalic 

effects. Notation marks and structures language but also makes manifest expres-

sions which are entirely outside of that which can be said. It gives performance 

to thought outside speech. Laughter is part of the terrain that computational 

practice moves across. It is part of the collateral contingency, and necessity, 

of sense and logic, the monstrous and the normative. It may be encountered 

in the materialities and anxieties of the practice, as played out in Kaufman’s 

Coloring Book, the making coherent of an ethical subject, as in Knuth’s Literate 

Programming, or in the habituating labour of notational production, as in 

Dijkstra. Laughter and notation both define and confound the limits in which 

the computational operates. These are constituent to its being in conflict and 

conformance, as dexterous pleasure and sinister doubt.

Notes

1 From McLean’s blog posting, Exclusion in Free Software Culture, 2012, http://yaxu.

org/exclusion-in-free-software-culture/ (accessed 08.01.2014).

2 A software utility that provides text-based interaction with the operating system, 

and replicates the purely text-based terminals of early UNIX systems.

3 McLean, Alex, ‘Hacking Perl in Nightclubs’, Perl.com, 2004, http://www.perl.com/

pub/2004/08/31/livecode.html/ (accessed 08.01.2014).

4 The issue of the physicality of the programmer has been taken up by McLean 

and others in the Live Notation project, http://www.livenotation.org (accessed 

08.01.2014).

5 Knuth, Donald E., The Art of Computer Programming, Vol. 1: Fundamental 

Algorithms (Boston: Addison-Wesley, 1997, 3rd edn), v.



 Bend Sinister 77

6 The first modulo operation, $note += 50 if %self->bangs % 4 == 0, is a basic 

division by four. The second modulo, by three, combines to create a 12
8

 rhythm, 

also typical of syncopated 4
4

 dance beats. The last modulo, by seven, goes against 

all this, however, providing a wandering off-beat that neatly complicates the whole 

affair.

7 Various examples of this are documented at http://www.1010.co.uk/org/notes.html 

(accessed 08.01.2014). Perhaps the simplest example is cat /dev/mem >> /dev/dsp 

used by programmer and musician NOISH (Oscar Martín), http://noconventions.

mobi/noish and given by goto10 at the top of some of their email listings. For 

an in-depth discussion of /dev/dsp see Tranter, Jeff, Linux Multimedia Guide 

(Sebastopol, CA: O’Reilly, 1996).

8 Alexander, Amy, ‘extreme whitespace’ (2003), http://deprogramming.us/

exwhindex.html (accessed 08.01.2014).

9 Larry Cuba’s Two Space, 1979, is cited by Alexander, ibid., as inspiration.

10 Knuth, Donald E., ‘The Errors of TEX’, in Literate Programming (Stanford, CA: 

CSLI Publications, 1992, first published 1989), 266–7.

11 Fuller discusses the same passage from Knuth in relation to the idea of elegance, 

where he concludes: ‘Elegance also manifests by means of disequilibrium, the tiny 

doses of poison …’; ‘Elegance’, in Software Studies: A Lexicon, ed. Matthew Fuller 

(Cambridge, MA: MIT Press, 1,940), 19–24.

12 A similar argument for the use of humour as a form of heuristic discovery is given 

in Minsky, Marvin L., ‘Jokes and the Logic of the Cognitive Unconscious’, AI 

Memo No. 603 (1980), http://web.media.mit.edu/~minsky/papers/jokes.cognitive.

txt (accessed 08.01.2014).

13 Knuth, Donald E., Selected Papers on Fun and Games (Stanford, CA: CSLI 

Publications, 2011).

14 Knuth, The Art of Computer Programming, xiv.

15 Kaufman, Roger E., A FORTRAN Coloring Book (Cambridge, MA: MIT Press, 

1978).

16 Examples include: Zwittlinger, Helmut, Comic PASCAL (Munich: Oldenbourg, 

1981); Brodie, Leo, Starting Forth (La Honda, CA: Mountain View Press, 

1981); Gonick, Larry, The Cartoon Guide to the Computer (New York: Harper 

Paperbacks, 1991); Donald Alcock’s series such as Illustrating BASIC, Illustrating 

PASCAL and Illustrating C, all published by Cambridge University Press in the 

1980s; and Barski, Conrad, Land of Lisp (San Francisco: No Starch Press, 2010). 

The first For Dummies title was Dan Gookin, DOS For Dummies (Newtonville, 

MA: IDG Books/Hungry Minds, 1991).

17 See Critchley, Simon, On Humour (London and New York: Routledge, 2002), 

13, and the discussion in Billig, Michael, Laughter and Ridicule: Towards a Social 



78 Fun and Software

Critique of Humour (London, Thousand Oaks and New Delhi: Sage, 2005) which 

cites Koestler’s text as an example of this ‘privileged’ concept of humour and 

describes research on the use of humour to construct and maintain relations 

within the workplace by Janet Holmes and The Language in the Workplace Project, 

Victoria University of Wellington, New Zealand.

18 These are archived at ftp://publications.ai.mit.edu/ai-publications/ and at Artificial 

Intelligence Lab Publications, http://dspace.mit.edu/handle/1721.1/5459 (both 

accessed 08.01.2014).

19 Dijkstra’s attack is principally directed against John von Neumann but is 

part of his wider critique of AI and computer science education in the 

United States; Dijkstra, Edsger W., Selected Writings on Computing: A Personal 

Perspective, EWD498 (New York, Heidelberg and Berlin: Springer-Verlag, 

1982), 130.

20 McLean, Alex, Artist-Programmers and Programming Languages for the Arts, PhD 

thesis (2011), 33. The main text by Blackwell is ‘Metaphors We Program By: Space, 

Action and Society in Java’, published in Proceedings of the 18th Psychology of 

Programming Interest Group 2006, 7–21.

21 See Knuth, Donald E., ‘Mathematical Writing’, in Literate Programming (Stanford, 

CA: CSLI Publications, 1992; first published 1987), 235–41. Another well-known 

example from computing science that makes use of various alchemical and 

esoteric metaphors is Abelson, Harold, Sussman, Gerald Jay and Sussman, Julie, 

Structure and Interpretation of Computer Programs (Cambridge, MA: MIT Press, 

1996, 2nd edn).

22 The relation between humour, logic and mathematics in Carroll is analysed in 

Deleuze, Gilles, The Logic of Sense (London: Athlone Press, 1990).

23 Kaufman trained under George Izenour, a leading pioneer in the field, and 

is referred to in Izenour’s Theater Technology, 1997, see http://www.seas.gwu.

edu/~kaufman1/TheaterDays/Izenour.html (accessed 08.01.2014).

24 See http://www.seas.gwu.edu/~kaufman1/KINSYN1/KINSYN1.html (accessed 

08.01.2014).

25 Kinematics is the study of the movement of objects in terms of their trajectories. 

Kinematic synthesis is a method of engineering in which a mechanism is designed 

to replicate a pre-determined path of movement.

26 More recent applications, however, have also included the development of 

full-body virtual reality harnesses used in combat training. There is surely some 

difficult irony that Kaufman’s work has been applied both to the support of those 

who have lost or severely injured limbs, and to the means through which such 

injuries come about. See http://www.seas.gwu.edu/~kaufman1/NRL/Gaiter.html 

(accessed 08.01.2014).



 Bend Sinister 79

27 http://www.seas.gwu.edu/~kaufman1/Burmester/Burmester.html (accessed 

08.01.2014).

28 http://www.seas.gwu.edu/~kaufman1/TheaterDays/Izenour.html http://www.seas.

gwu.edu/~kaufman1/KINSYN1/KINSYN1.html (both accessed 08.01.2014).

29 For a history of FORTRAN see the entry in Sammet, Jean E., Programming 

Languages: History and Fundamentals (Englewood Cliffs, NJ: Prentice-Hall, 1969).

30 Over time such features were added and were present in the later version of 

FORTRAN that Kaufman describes in his book.

31 Sammet, Programmimg Languages,147, see also Padua, David. ‘The FORTRAN I 

Compiler’, Computing in Science & Engineering, 2(1) (2000): 70–5.

32 Kaufman was, to an extent, exceptional in having such direct access, but this 

would not necessarily have been the case for his readers.

33 Lacey, A. R., Bergson: The Arguments of the Philosophers (London and New York: 

Routledge, 1989), 188.

34 Bergson, Henri, Laughter: An Essay on the Meaning of the Comic (Los Angeles: 

Project Gutenberg, 2009), 13.

35 Kennedy outlines the similarities and differences between Bergson and Herder: 

Kennedy, Ellen Lee, ‘Freedom’ and ‘The Open Society’: Henri Bergson’s Contribution 

to Political Philosophy (New York and London: Garland, 1987). For theories of the 

mechanical in German Romantic theory see Norton, Robert E., Herder’s Aesthetics 

and the European Enlightenment (Ithaca, NY and London: Cornell University 

Press, 1991).

36 Drawing on the metaphor of the nervous system acting like a telephone exchange 

which Bergson uses in Matter and Memory, Lawlor claims that Bergson ‘conceives 

the living body as a machine’, arguing that this passing metaphor presages a 

notion of the computer. See Lawlor, Leonard, The Challenge of Bergsonism 

(London and New York: Continuum, 2003), 16. For Bergson, however, this is 

neither a formulation of machine intelligence (which would be a recapitulation 

to Descartes) nor the Deleuzian concept of the machine as assemblage, but rather 

part of Bergson’s negative denigration of that which is ‘merely’ material, for here 

the machine metaphor denotes the limits of material, bodily perception (‘It adds 

nothing to what it receives …’) and its inferiority to the spiritual. Bergson, Henri, 

Matter and Memory (New York: Zone Books, 1991), 30.

37 The limitations of Bergson’s approach to repetition is further developed in those 

writers who also considered the importance of time but who directly critiqued his 

work, such as Bachelard and Lefebvre.

38 Bergson, Laughter, 10.

39 Le Bons Sens et Les Études classiques, originally presented as a lecture in 1895, 

English translation published as ‘Good Sense and Classical Studies’, in Key 



80 Fun and Software

Writings, (eds) Keith Ansell Pearson and John Mullarkey (London: Continuum, 

2002), 345–53.The relation between the two essays is discussed in Kennedy, 

‘Freedom’ and ‘The Open Society’.

40 See Billig, Laughter and Ridicule. Deleuze describes good sense as that which 

imposes a particular direction upon ideas. Deleuze, The Logic of Sense (London: 

Athlone Press, 1990)

41 http://www.catb.org/jargon/ (accessed 08.01.2014); see also Coleman, E. Gabriella, 

Coding Freedom: The Ethics and Aesthetics of Hacking (Princeton, NJ and Oxford: 

Princeton University Press, 1,945), 32–63.

42 Coleman, ibid., 100–5, see Douglas, Mary, Implicit Meanings: Selected Essays in 

Anthropology (London and New York: Routledge, 2003).

43 Coleman, Coding Freedom, 93–4.

44 Virno, Paolo, Multitude: Between Innovation and Negation (Los Angeles: 

Semiotext(e), 2008), 97.

45 Ibid., 87.

46 Ibid., 97.

47 http://www.seas.gwu.edu/~kaufman1/DressingMachines.html (accessed 

08.01.2014).

48 Star, Susan Leigh, ‘Power, Technologies and the Phenomenology of Conventions: 

On Being Allergic to Onions’, in A Sociology of Monsters: Essays on Power, 

Technology and Domination, ed. John Law (London and New York: Routledge, 

1991), 36.

49 Ibid., 43.

50 This may seem a strange statement for those who have come to Bergson via 

Deleuze and Guattari, for whom the constant processural change of Bergsonian 

duration is integral to their theory of becoming, but Bergson only provides some 

ingredients to this rather than the theory as a whole. Becoming for Deleuze and 

Guattari, drawing also on Spinoza, Kleist and schizo-analysis, allows a movement 

across identities of being (categorical ontologies) that Bergson does not allow 

for. In Bergsonism Deleuze discusses Bergson’s critique of the relation between 

automata and simple life forms argued by Descartes. For Bergson the living and 

the mechanical are two ‘irreducible orders … each present when the other is 

absent’. Deleuze, Gilles, Bergsonism (New York: Zone Books, 1991), 19–20.

51 Douglas, Implicit Meanings, 150–1.

52 The negative as a ‘false problem’ and critique of dialectic in Bergson is discussed 

in Deleuze, Bergsonism, 46. Bakhtin highlights the negative interpretation 

of laughter in Bergson’s Le Rire, in Bakhtin, Mikhail, Rabelais and His World 

(Cambridge, MA and London: MIT Press, 1968), 71.

53 Virno, Multitude, 182–6. The analogy here is with first-order logic, a form of logic 



 Bend Sinister 81

that excludes self-reference – Smullyan, Raymond M., First-Order Logic (New 

York: Dover, 1995).

54 Brockett, Oscar G., History of the Theatre (Boston and London: Allyn & Bacon, 

1991), 34.

55 Haraway, Donna, ‘The Promises of Monsters: A Regenerative Politics for 

Inappropriate/d Others’, in Cultural Studies, (eds) Lawrence Grossberg, Cary 

Nelson and Paula Treichler (New York: Routledge, 1992), 299.

56 Gubar, Susan, ‘The Female Monster in Augustan Satire’, Signs, 3(2) (1977): 

380–94.

57 As argued, for example, in von Neumann, John The Computer and the Brain 

(New Haven and London: Yale University Press Press, 2000, 2nd edn). Elsewhere 

Dijkstra wrote: ‘I think I can understand the world better if I don’t regard 

Artificial Intelligence and General Systems Thinking as scientific activities, but 

as political or quasi-religious movements (complete with promise of salvation)’. 

Dijkstra, Edsger W., Selected Writings on Computing, 257.

58 Dijkstra, Edsger W., A Discipline of Programming (Englewood Cliffs, NJ: 

Prentice-Hall Inc., 1976), 201.

59 See Turing, Alan, ‘On Computable Numbers, with an Application to the 

Entscheidungsproblem’, Proceedings of the London Mathematical Society, 42(2) 

(1936): 230–65. Turing uses the term ‘computer’ on its own to refer to the 

person performing calculations, this was the common usage at a time when 

such computing machines had yet to come into existence. Notably, the human 

computer in Turing’s paper is male whereas the job was done almost exclusively 

by female workers, this derived from and reinforced a gender distinction between 

the ‘intellectual’ creativity of the male mathematician and the manual procedural 

labour of the female computer.

60 See Yuill, Simon, ‘Interrupt’, in Software Studies: A Lexicon, ed. Matthew Fuller, 

(Cambridge, MA: MIT Press, 2008), 161–7.

61 The theorem and its proof are explained in Trudeau, Richard J., Introduction to 

Graph Theory (New York: Dover, 1993).

62 Quoted in MacKenzie, Donald, Mechanizing Proof: Computing, Risk, and Trust 

(Cambridge, MA: MIT Press, 2001), 138.

63 Trudeau, Introduction, 197. For a discussion of its relevance in defining a 

change in mathematical practice see Rotman, Brian, ‘Will the Digital Computer 

Transform Classical Mathematics?’, Philosophical Transactions of the Royal Society 

of London, 361 (2003): 1675–90.

64 Detlefsen, Michael, ‘Purity as an Ideal of Proof ’, in The Philosophy of Mathematical 

Practice, ed. Paolo Mancosu (Oxford: Oxford University Press, 2008), 179. 

Zalamea argues that the distinction between the pure mathematics of the 



82 Fun and Software

nineteenthth and early twentieth centuries, whose purity could be said to have 

derived from this prohibition, and the synthetic mathematics of today is that 

of the latter practice consciously making this transgression, as in the work 

of Grothendieck. Zalamea, Oscar G., Synthetic Philosophy of Contemporary 

Mathematics (Falmouth: Urbanomic, 2012).

65 Dijkstra, Selected Writings on Computing, 129.

66 Despite making such a choice, Dijkstra elsewhere warns against such practices 

as they tend too much towards an overly material, craft-like approach to 

programming: ‘it does not suffice to point out that there exists a point of view of 

programming in which punched cards are as irrelevant as the question whether 

you do your mathematics with a pencil or with a ballpoint. It deserves a special 

warning because, besides being disastrous, it is so respectable!’ Dijkstra, Selected 

Writings on Computing, 106.

67 de Man, Paul, ‘Anthropomorphism and Trope in the Lyric’, in The Rhetoric of 

Romanticism (New York: Columbia University Press, 1984), 250.

68 Barany, Michael J. and MacKenzie, Donald, ‘Chalk: Materials and Concepts 

in Mathematics Research’, in Representation in Scientific Practice Revisited, 

(eds) Catelijne Coopmans, Janet Vertesi, Michael E. Lynch and Steve Woolgar 

(Cambridge, MA and London: MIT Press, 2014), 107–29.

69 Knuth, Donald E., ‘Computer Programming as an Art’, in Literate Programming 

(Stanford, CA: CSLI Publications, 1992), 1–16. First published 1974 in receipt of 

the A. M. Turing Award.

70 The only other source quoted at length is Edsger Dijkstra.

71 Bentham, Jeremy, The Rationale of Reward, trans. from Théorie des peines et des 

récompenses, 1811, by Richard Smith (J. & H. L. Hunt, London, 1825), Book 3, 

Chapter 1, cited in Knuth, ‘Computer Programming as an Art’, 9.

72 For a description of the conceptual development and algorithmic dimensions 

to Bentham’s calculus, see Mitchell, Wesley C., ‘Bentham’s Felicific Calculus’, in 

Jeremy Bentham: Ten Critical Essays, ed. Bhikhu Parekh (London: Frank Cass, 

1974), 168–86.

73 Mill, John Stuart, A System of Logic, Ratiocinative and Inductive (London, 1843). 

Quoted in Knuth, ‘Computer Programming as an Art’, 4.

74 Knuth, Donald E., ‘Literate Programming’, in Literate Programming (Stanford, CA: 

CSLI Publications, 1992, first published 1984), 99.

75 See Klein, Lawrence E., Shaftesbury and the Culture of Politeness: Moral Discourse 

and Cultural Politics in Early Eighteenth-century England (Cambridge: Cambridge 

University Press, 1994).

76 Ibid., 110–11.

77 Poovey, Mary, A History of the Modern Fact: Problems of Knowledge in the Sciences 



 Bend Sinister 83

of Wealth and Society (Chicago and London: University of Chicago Press, 1998), 

172, 181.

78 Ibid., 154, 179.

79 Shaftesbury, Anthony, Third Earl of, ‘Sensus Communis; an Essay on the Freedom 

of Wit and Humour’, in Characteristicks of Men, Manners, Opinions, Times, vol. I, 

Foreword by Douglas Den Uyl (Indianapolis, IN: Liberty Fund, 2001), 40.

80 Grean, Stanley, Shaftesbury’s Philosophy of Religion and Ethics: A Study in 

Enthusiasm (Athens, OH: Ohio University Press, 1967), 124.

81 Ayres, Philip, ‘Introduction’, in Characteristicks of Men, Manners, Opinions, zimes, 

vol. I (Oxford: Clarendon Press, 1999), xxxi.

82 https://en.wikipedia.org/wiki/TeX (accessed 08.01.2014).

83 Graham, Ronald L., Knuth, Donald E. and Patashnik, Oren, Concrete 

Mathematics: A Foundation for Computer Science (Reading, MA: Addison-Wesley, 

1989), viii.

84 Ibid., vii.

85 Ibid., v.

86 Ibid., vii.

87 Grean, Shaftesbury’s Philosophy of Religion and Ethics, 128.

88 The original, in ‘Sensus Communis; an Essay on the Freedom of Wit and 

Humour’, reads: ‘For without Wit and Humour, Reason can hardly have its proof, 

or be distinguish’d’.

89 Knuth, Donald E., ‘Computer Science and Its Relation to Mathematics’, in 

Selected Papers on Computer Science (Stanford, CA: CSLI Publications, 1996; first 

published 1973), 10.

90 Knuth, Donald E., Things a Computer Scientist Rarely Talks About (Stanford, CA: 

CSLI Publications, 2001), 169.

91 For a summary of Tarde’s analysis, see Lazzarato, Maurizio, ‘European Cultural 

Tradition and the New Forms of Production and Circulation of Knowledge’, http://

www.moneynations.ch/topics/euroland/text/lazzarato.htm (accessed 08.01.2014).

92 Shaftesbury, Characteristicks of Men, Manners, Opinions, Times, vol. II, ed. Philip 

Ayres (Oxford: Clarendon Press, 1999), 273. This should be understood as a 

contradictory tension rather than absolute difference. For a discussion of the 

tensions between Shaftesbury’s moral theory and liberal economic ideology, see 

Grean, Shaftesbury’s Philosophy of Religion and Ethics, and Klein, Shaftesbury and 

the Culture of Politeness.

93 von Neumann, John and Morgenstern, Oskar, Theory of Games and Economic 

Behaviour (Princeton, NJ: Princeton University Press, 1944, second edition). Sen, 

Amartya, Collective Choice and Social Welfare (San Francisco: Holden Day, 1970), 

discusses von Neumann and Morgenstern as a development from Benthamite 



84 Fun and Software

Utilitarianism. Like Bentham before them, von Neumann and Morgenstern 

invoked the Newtonian revolution in physics as the precedent upon which they 

were building.

94 ‘Let us remember that topology and theory of numbers sprang in part from 

that which used to be called “mathematical entertainments”, “recreational 

mathematics” … that the calculation of probabilities was at first nothing other 

than an anthology of “diversions”, as Bourbaki states in the “Notice Historique” of 

the twenty-first fascicle on Integration’. Raymond Queneau, quoted in Roubauds, 

Jacques, ‘Mathematics in the Method of Raymond Queneau’, in OuLiPo: A Primer 

of Potential Literature, ed. Warren F. Motte (Normal, IL: Dalkey Archive Press, 

1986), 85.

95 The introduction of the symbol is described in Weil, André, The Apprenticeship of 

a Mathematician (Basel, Boston and Berlin: Birkhäuser Verlag, 1992), 114.

96 Knuth, Fundamental Algorithms, 10.

97 Knuth, Fundamental Algorithms, 81.

98 The origins of Bourbaki are discussed in Campbell, Elizabeth, ‘Bourbaki’ 

(from Manifold #1) in Seven Years of Manifold, 1968–1980, (eds) Ian Stewart 

and John Jaworksi (Nantwich: Shiva Publishing, 1981), 7–9; and Weil, The 

Apprenticeship of a Mathematician, 100–3. The surname comes from the French 

general Charles Denis Bourbaki who was famous as the victim of a hoax identity 

trick.

99 Weil, The Apprenticeship of a Mathematician, 113.

100 For example, in William Ewald’s two-volume anthology of key texts in the 

development of pure mathematics, From Kant to Hilbert: A Source Book in the 

Foundations of Mathematics (Oxford: Clarendon Press, 1996). In Ewald’s case I 

think he was well aware of Bourbaki’s identity.

101 Originally produced on duplicator machines by students at the University 

of Warwick. At the height of the Cold War the group donated free copies to 

organizations in Cuba in an attempt to have the fanzine deliberately banned by 

the US government. One of its main editors was Ian Stewart whose critique of the 

Appel-Haken proof is quoted above. Stewart and Jaworksi provide an anthology 

and history of Manifold in Seven Years of Manifold, 1968–1980, (eds) Ian Stewart 

and John Jaworksi (Nantwich: Shiva Publishing, 1981). For OuLiPo, see Roubauds, 

‘Mathematics in the Method of Raymond Queneau’, and Le Lionnais, François, 

‘Raymond Queneau and the Amalgam of Mathematics and Literature’, in OuLiPo: 

A Primer of Potential Literature, ed. Warren F. Motte (Normal, IL: Dalkey Archive 

Press, 1986), 85, 74–8. For Luther Blissett and Karen Eliot, see Stalder, Felix, 

‘Digital Identities Patterns in Information Flows’ (2000), http://felix.openflows.

com/html/digital_identity.html (accessed 08.01.2014) and Priest, Eldritch, Boring 



 Bend Sinister 85

Formless Nonsense: Experimental Music and the Aesthetics of Failure (New York 

and London: Bloomsbury, 2013).

102 Campbell, ‘Bourbaki’, 9; Home, Stewart, ‘Feuding Considered As Performance 

Art: with asides on the 57 varieties of under determination in the discourses that 

structure the opportunism of careerists like Brian Sewell & John Roberts’ (1996), 

http://www.stewarthomesociety.org/9feud.html (accessed 08.01.2014).

103 Graham et al., Concrete Mathematics, vii. There is a stronger nuance to this in 

that Bourbaki retain names in the historical notes but not in the presentation of 

new theory. This follows the distinction in the original French editions in which 

historical developments always belong to mathematics in the plural (Éléments 

d’histoire des mathématiques), while the new theory is of a unified mathematic in 

the singular (Éléments de mathématique).

104 Dijkstra, Selected Writings on Computing. All of Dijkstra’s notes are numbered 

according to his own indexing system denoted by his initials EWD, e.g. EWD28, 

EWD29. They are available online at the Edsger W. Dijkstra Archive, http://www.

cs.utexas.edu/users/EWD/welcome.html (accessed 08.01.2014).

105 Scriblerian comes from Scriblerus Club, a group of eighteenth-century writers 

which included Jonathan Swift and Alexander Pope and was named after a 

fictitious figure, Martinus Scriblerus, who is referenced in their works and 

sometimes used as a pseudonym. The group satirized the abuse of knowledge 

and impoverishment of the writer that they linked to the growth in a profit-

driven commercial book industry. It would be wrong to assume that Dijkstra’s 

critique was evidence of radical politics, more that he sought to defend the general 

independence of academic research. Dijkstra was as critical of trade unions as 

he was of corporate business and appears to have endorsed more technocratic 

theories of government such as that put forward by F. J. M. Laver.

106 Dijkstra, Selected Writings on Computing, 333.

107 The information on ALGOL is taken from Dijkstra, Edsger W., A Primer of 

ALGOL 60 Programming: Together with Report on the Algorithmic Language 

ALGOL 60 (London and New York: Academic Press, 1962) and Daylight, Edgar 

G., The Dawn of Software Engineering: From Turing to Dijkstra (Heverlee, Belgium: 

Lonely Scholar, 2012).

108 Hilbert, David, ‘The Foundations of Mathematics’, in From Frege to Gödel: 

A Source Book in Mathematical Logic, 1879–1931, ed. Jean van Heijenoort 

(Cambridge, MA and London: Harvard University Press, 2000; a paper originally 

presented in 1927), 475 (emphasis in original). ‘The Foundations of Mathematics’ 

was, in part, a response to the criticism of L. E. J. Brouwer that Hilbert’s model 

of mathematical practice reduced mathematics to a mere a game. Mario Szegedy 

suggest parallels between Dijkstra’s work and Bourbaki’s attempt to realize 



86 Fun and Software

Hilbert’s project via a discussion with fellow mathematician Pierre Deligne who 

had worked with a number of Bourbaki members, In Memoriam Edsger Wybe 

Dijkstra (1930–2002), http://www.cs.rutgers.edu/~szegedy/dijkstra.html (accessed 

08.12.2014).

109 Dijkstra, Edsger W., A Discipline of Programming (Englewood Cliffs, NJ: 

Prentice-Hall Inc., 1976), 8.

110 Perhaps even more so given that Knuth came to programming through reading 

Chomsky.

111 The theme of elegance and correctness in Dijkstra is explored in MacKenzie, 

Mechanizing Proof. The distinctions might also be seen in the famous debate 

between the two programmers over the use of GOTO statements.

112 Dijkstra, A Primer of ALGOL 60 Programming, 77. In the report the quote is given 

in the original German. While there were several authors of the report, it would 

seem reasonable to assume Dijkstra was responsible for including the quote as his 

colleague Peter Naur has stated that ‘Dijkstra admired Wittgenstein’, Daylight, The 

Dawn of Software Engineering, 175.

113 For a discussion of APL in relation to issues in mathematical notation and the 

problems regarding its implementation, see Iverson, Kenneth E., Falkoff, Adin 

D., Lee, JAN and Brooks, Frederic, ‘APL Session’, in History of Programming 

Languages, ed. Richard L. Wexelblat (New York: Academic Press, 1981), 661–92.

114 Dijkstra, A Primer of ALGOL 60 Programming, 33.

115 This is one of the main claims put forward in Daylight and supported by 

interviews with several of Dijkstra’s contemporaries and analyses of computing 

conference reports of the time.

116 Turing, Alan, ‘The Reform of Mathematical Notation and Phraseology’, 

typewritten manuscript, undated, http://www.turingarchive.org/browse.php/C/12 

(accessed 08.01.2014). Turing, however, draws upon symbolic logic rather than 

set theory as in Bourbaki. In this regard he may have been following Alfred North 

Whitehead and Bertrand Russell’s Principia Mathematica, 3 vols. (Cambridge: 

Cambridge University Press, 1910, 1912 and 1913) .

117 For a transcript of these lectures, in which discussions between Turing and 

Wittgenstein are included, see Wittgenstein, Ludwig, Wittgenstein’s Lectures on the 

Foundations of Mathematics (London: Harvester Press, 1976. Cambridge, 1939, 

from the notes of R.G. Bosanquet, Norman Malcolm, Rush Rhees and Yorick 

Smythies).

118 Copeland, B. Jack, ‘From the Entscheidungsproblem to the Personal Computer 

and Beyond’, in Kurt Gödel and the Foundations of Mathematics, (eds) M. Baz, 

C. H. Papadimitriou, H. W. Putnam, D. S. Scot and C. L. Harper (Cambridge: 

Cambridge University Press, 2011), 176–9.



 Bend Sinister 87

119 ‘This discipline [mathematics] ignores entirely any meaning which may originally 

have been attributed to the words or phrases of formalized mathematics texts, 

and considers these texts as particularly simple objects, namely as assemblies 

of previously given objects in which only the assigned order is of importance’. 

Bourbaki, Nicolas, Theory of Sets. Elements of Mathematics (Reading, MA: 

Addison-Wesley, 1968), 10.

120 The theme of non-sense in mathematics is pursued in depth in Deleuze, The Logic 

of Sense.

121 Whilst this has some parallels with the issues Gödel explored in his analysis of 

paradox in the Principia Mathematica, it is addressed as much to mathematics as 

a practice as it is to the questioning of the internal consistency of mathematical 

theory.

122 See also the critique of Platonism and Intuitionism in Rotman, Brian, The Ghosts 

in Turing’s Machine: Taking God Out of Mathematics and Putting the Body Back In 

(Stanford, CA: Stanford University Press, 1993).

123 Wittgenstein, Ludwig, Remarks on the Foundations of Mathematics (Oxford: Basil 

Blackwell, 1978, 3rd edn), 264.

124 This might also suggest a tension between later Wittgenstein and Quentin 

Meillassoux’s necessity of contingency different from that which Badiou might 

expect. For Badiou’s discussion of Wittgenstein and the above passage, see Badiou, 

Alain, Wittgenstein’s Antiphilosophy (London and New York: Verso, 2011).

125 Deleuze makes the distinction between a paradox that is the ‘initiative’ to thought 

and is merely recreational, and that which is ‘the Passion of thought’, and which 

‘can only be thought … can only be spoken, despite the fact that it is both 

ineffable and unthinkable’. Deleuze, The Logic of Sense, 74.

126 Dijkstra, A Discipline of Programming, 8.

127 Dijkstra, Selected Writings on Computing, 341.

128 For a discussion of Dijkstra’s arguments regarding machine proofs see MacKenzie, 

Mechanizing Proof. Wittgenstein’s arguments are explored more directly in relation 

to computing in Kripke, Saul A., Wittgenstein on Rules and Private Language: An 

Elementary Exposition (Oxford: Basil Blackwell, 1982) and Gefwert, Christoffer, 

Wittgenstein on Mathematics, Minds and Mental Machines (Aldershot, Brookfield, 

VT, Singapore and Sydney: Ashgate, 1998). Does the machine actually calculate in 

accordance with the same sense as a human, or does it merely approximate more 

or less accurately to our expectations of what a calculation should be?

129 Dijkstra, Selected Writings on Computing, 100–1.

130 To what extent Dijkstra’s conception of the algorithm as object relates to 

Whitehead’s notion of the ‘scientific object’ is also worth exploring: ‘The origin of 

scientific endeavour is to express in terms of physical objects the various roles of 



88 Fun and Software

events as active conditions in the ingression of sense-objects into nature. It is in 

the progress of this investigation that scientific objects emerge … These scientific 

objects are not themselves merely formulae for calculation; because formulae 

must refer to things in nature, and the scientific objects are the things in nature 

to which the formulae refer’. Whitehead, Concept of Nature, 158, quoted and 

discussed in Stengers, Isabelle, Thinking with Whitehead: A Free and Wild Creation 

of Concepts, Foreword by Bruno Latour (Cambridge, MA: Harvard University 

Press, 2011), 96. An algorithm that analyses sensory data clearly constructs a 

scientific object in this process, but to what extent does an algorithm performing 

on a computer itself become a ‘thing in nature’ subject to other forms of analysis?

131 Fitzgerald, John J., Peirce’s Theory of Signs as Foundation for Pragmatism (The 

Hague and Paris: Mouton and Co., 1966), 146.

132 Dijkstra, A Discipline of Programming.

133 Fitzgerald, Peirce’s Theory of Signs, 14.

134 Bergson, Henri, ‘The Idea of Duration’, in Key Writings, ed. Keith Ansell Pearson 

and John Mullarkey (London: Continuum, 2002), 55.

135 Rotman, Brian, Becoming Beside Ourselves: The Alphabet, Ghosts, and Distributed 

Human Being (Durham, NC and London: Duke University Press, 2008).

136 Deleuze, Gilles and Guattari, Félix A Thousand Plateaus: Capitalism and 

Schizophrenia (London: Athlone Press, 1988), 148.

137 Bergson, Henri, ‘The Idea of Duration’, in Key Writings, (eds) Keith Ansell Pearson 

and John Mullarkey (London: Continuum, 2002), 76.

138 ‘I imagined myself getting onto the back of an author, and giving him a child, 

which would be his and which would at the same time be a monster. It is very 

important that it should be his child, because the author actually had to say 

everything that I made him say. But it also had to be a monster because it 

was necessary to go through all kinds of decenterings, slips, break ins, secret 

emissions, which I really enjoyed. My book on Bergson seems to me a classic case 

of this’. Deleuze, ‘Lettre à Michel Cressole’, in Michel Cressole, Deleuze (Paris: 

Éditions Universitaires, 1973), 111, quoted in Translator’s Introduction, Deleuze, 

Bergsonism, 8.

139 Rotman, Becoming Beside Ourselves, 60.

140 See Rotman, Brian, The Ghosts in Turing’s Machine, ‘the possibility of performing 

arithmetical calculations by machinery … is connected with the subject of the 

division of labour …’ Babbage, Charles, ‘On the Division of Mental Labour’, in On 

the Principles and Development of the Calculator: And Other Seminal Writings by 

Charles Babbage and Others (Los Angeles: Dover, 1961), 318.

141 In this regard, each of the perspectives on programming offered by Kaufman, 

Knuth and Dijkstra can be understood as different attempts to negotiate and make 



 Bend Sinister 89

sense of this assemblage. Kaufman inhabits an ambiguous, anxious corporeality 

of hybrid Agents, whilst Knuth seeks a re-consolidation of a ‘classical’ formation 

of the computing self as Person and a normativization of the machinic under a 

paternal pedagogics. Dijkstra in his wariness of the machine, appears furthest 

from accepting the independent operation of the Agent, and in preferring the 

computer manual over the hardware appears to give primacy to the Subject. Yet 

there is also a sense of engaging with the limit of computation in Dijkstra that 

places the role of humour, and the comedic, in an entirely different position from 

that of Kaufman and Knuth and does not offer a simple resolution of Rotman’s 

distribution.

142 Sohn-Rethel, Alfred, Intellectual and Manual Labour: A Critique of Epistemology 

(London: Macmillan, 1978).

143 For an overview, see Landauer, Rolf, ‘Information is Inevitably Physical’, in 

Feynman and Computation: Exploring the Limits of Computers, ed. Anthony J. G. 

Hey (Reading, MA: Perseus Books, 1999), 77–92.

144 Wiener, Norbert, Cybernetics: Or Control and Communication in the Animal and 

the Machine (New York: John Wiley & Sons, 1948).

145 Lefebvre, Henri, Rhythmanalysis: Space, Time and Everyday Life (London and New 

York: Continuum, 2004), 75.

146 Ibid., 40.

147 Ibid., 44.

148 See ‘Mirror Neurons, Linguistic Negation, Reciprocal Recognition’, in Virno, 

Multitude (emphasis in the original).

149 Black, D. W., ‘Laughter’, Journal of the American Medical Association 252( 21) 

(1984): 2,995–8.

150 Copeland, ‘From the Entscheidungsproblem to the Personal Computer and 

Beyond’.

151 The debates for and against recursion are discussed in Daylight, The Dawn of 

Software Engineering.

152 von Neumann, John, ‘Probabilistic Logics and the Synthesis of Reliable Organisms 

from Unreliable Components’, in Automata Studies (Princeton, NJ: Princeton 

University Press, 1956), 25.

153 Cantwell Smith, Brian, On the Origin of Objects (Cambridge, MA: MIT Press, 

1996), 334–5.

154 Jagendorf, Zvi, The Happy End of Comedy: Jonson, Molière, and Shakespeare 

(Newark, NJ: University of Delaware Press, 1984), 17.


